给你一个大小为 m x n
的二维字符数组 picture
,表示一张黑白图像,数组中的 'B'
表示黑色像素,'W'
表示白色像素。另给你一个整数 target
,请你找出并返回符合规则的 黑色 孤独像素的数量。
黑色孤独像素是指位于某一特定位置 (r, c)
的字符 'B'
,其中:
- 行
r
和列c
中的黑色像素恰好有target
个。 - 列
c
中所有黑色像素所在的行必须和行r
完全相同。
示例 1:
输入:picture = [["W","B","W","B","B","W"],["W","B","W","B","B","W"],["W","B","W","B","B","W"],["W","W","B","W","B","W"]], target = 3 输出:6 解释:所有绿色的 'B' 都是我们所求的像素(第 1 列和第 3 列的所有 'B' ) 以行 r = 0 和列 c = 1 的 'B' 为例: - 规则 1 ,行 r = 0 和列 c = 1 都恰好有 target = 3 个黑色像素 - 规则 2 ,列 c = 1 的黑色像素分别位于行 0,行 1 和行 2。和行 r = 0 完全相同。
示例 2:
输入:picture = [["W","W","B"],["W","W","B"],["W","W","B"]], target = 1 输出:0
提示:
m == picture.length
n == picture[i].length
1 <= m, n <= 200
picture[i][j]
为'W'
或'B'
1 <= target <= min(m, n)
“哈希表”实现。
class Solution:
def findBlackPixel(self, picture: List[List[str]], target: int) -> int:
m, n = len(picture), len(picture[0])
rows = [0] * m
cols = defaultdict(list)
for i in range(m):
for j in range(n):
if picture[i][j] == 'B':
rows[i] += 1
cols[j].append(i)
t = [[False] * m for _ in range(m)]
for i in range(m):
for k in range(i, m):
if i == k:
t[i][k] = True
else:
t[i][k] = all([picture[i][j] == picture[k][j] for j in range(n)])
t[k][i] = t[i][k]
res = 0
for i in range(m):
if rows[i] == target:
for j in range(n):
if len(cols[j]) == target and all([t[i][k] for k in cols[j]]):
res += 1
return res
class Solution {
public int findBlackPixel(char[][] picture, int target) {
int m = picture.length, n = picture[0].length;
int[] rows = new int[m];
Map<Integer, List<Integer>> cols = new HashMap<>();
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (picture[i][j] == 'B') {
++rows[i];
cols.computeIfAbsent(j, k -> new ArrayList<>()).add(i);
}
}
}
boolean[][] t = new boolean[m][m];
for (int i = 0; i < m; ++i) {
for (int k = i; k < m; ++k) {
t[i][k] = i == k || all(picture[i], picture[k]);
t[k][i] = t[i][k];
}
}
int res = 0;
for (int i = 0; i < m; ++i) {
if (rows[i] == target) {
for (int j = 0; j < n; ++j) {
List<Integer> col = cols.get(j);
if (col != null && col.size() == target) {
boolean check = true;
for (int k : col) {
check = check && t[i][k];
}
if (check) {
++res;
}
}
}
}
}
return res;
}
private boolean all(char[] row1, char[] row2) {
int n = row1.length;
for (int j = 0; j < n; ++j) {
if (row1[j] != row2[j]) {
return false;
}
}
return true;
}
}
class Solution {
public:
int findBlackPixel(vector<vector<char>>& picture, int target) {
int m = picture.size(), n = picture[0].size();
vector<int> rows(m);
unordered_map<int, vector<int>> cols;
for (int i = 0; i < m; ++i)
{
for (int j = 0; j < n; ++j)
{
if (picture[i][j] == 'B')
{
++rows[i];
cols[j].push_back(i);
}
}
}
vector<vector<bool>> t(m, vector<bool>(m, false));
for (int i = 0; i < m; ++i)
{
for (int k = i; k < m; ++k)
{
t[i][k] = i == k || all(picture[i], picture[k]);
t[k][i] = t[i][k];
}
}
int res = 0;
for (int i = 0; i < m; ++i)
{
if (rows[i] == target)
{
for (int j = 0; j < n; ++j)
{
if (cols[j].size() == target)
{
bool check = true;
for (int k : cols[j]) check = check && t[i][k];
if (check) ++res;
}
}
}
}
return res;
}
bool all(vector<char>& row1, vector<char>& row2) {
int n = row1.size();
for (int j = 0; j < n; ++j)
if (row1[j] != row2[j]) return false;
return true;
}
};
func findBlackPixel(picture [][]byte, target int) int {
m, n := len(picture), len(picture[0])
rows := make([]int, m)
cols := make(map[int][]int)
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
if picture[i][j] == 'B' {
rows[i]++
cols[j] = append(cols[j], i)
}
}
}
t := make([][]bool, m)
for i := 0; i < m; i++ {
t[i] = make([]bool, m)
}
for i := 0; i < m; i++ {
for k := i; k < m; k++ {
if i == k {
t[i][k] = true
} else {
t[i][k] = all(picture[i], picture[k])
}
t[k][i] = t[i][k]
}
}
res := 0
for i := 0; i < m; i++ {
if rows[i] == target {
for j := 0; j < n; j++ {
col, ok := cols[j]
if ok && len(col) == target {
check := true
for _, k := range col {
check = check && t[i][k]
}
if check {
res++
}
}
}
}
}
return res
}
func all(row1, row2 []byte) bool {
n := len(row1)
for i := 0; i < n; i++ {
if row1[i] != row2[i] {
return false
}
}
return true
}