给你一个整数数组 nums
,数组中共有 n
个整数。132 模式的子序列 由三个整数 nums[i]
、nums[j]
和 nums[k]
组成,并同时满足:i < j < k
和 nums[i] < nums[k] < nums[j]
。
如果 nums
中存在 132 模式的子序列 ,返回 true
;否则,返回 false
。
示例 1:
输入:nums = [1,2,3,4] 输出:false 解释:序列中不存在 132 模式的子序列。
示例 2:
输入:nums = [3,1,4,2] 输出:true 解释:序列中有 1 个 132 模式的子序列: [1, 4, 2] 。
示例 3:
输入:nums = [-1,3,2,0] 输出:true 解释:序列中有 3 个 132 模式的的子序列:[-1, 3, 2]、[-1, 3, 0] 和 [-1, 2, 0] 。
提示:
n == nums.length
1 <= n <= 2 * 105
-109 <= nums[i] <= 109
方法一:单调栈
方法二:树状数组
树状数组,也称作“二叉索引树”(Binary Indexed Tree)或 Fenwick 树。 它可以高效地实现如下两个操作:
- 单点更新
update(x, delta)
: 把序列 x 位置的数加上一个值 delta; - 前缀和查询
query(x)
:查询序列[1,...x]
区间的区间和,即位置 x 的前缀和。
这两个操作的时间复杂度均为 O(log n)
。
树状数组最基本的功能就是求比某点 x 小的点的个数(这里的比较是抽象的概念,可以是数的大小、坐标的大小、质量的大小等等)。
比如给定数组 a[5] = {2, 5, 3, 4, 1}
,求 b[i] = 位置 i 左边小于等于 a[i] 的数的个数
。对于此例,b[5] = {0, 1, 1, 2, 0}
。
解决方案是直接遍历数组,每个位置先求出 query(a[i])
,然后再修改树状数组 update(a[i], 1)
即可。当数的范围比较大时,需要进行离散化,即先进行去重并排序,然后对每个数字进行编号。
class Solution:
def find132pattern(self, nums: List[int]) -> bool:
ak = float('-inf')
stack = []
for num in nums[::-1]:
if num < ak:
return True
while stack and num > stack[-1]:
ak = stack.pop()
stack.append(num)
return False
class BinaryIndexedTree:
def __init__(self, n):
self.n = n
self.c = [0] * (n + 1)
@staticmethod
def lowbit(x):
return x & -x
def update(self, x, delta):
while x <= self.n:
self.c[x] += delta
x += BinaryIndexedTree.lowbit(x)
def query(self, x):
s = 0
while x:
s += self.c[x]
x -= BinaryIndexedTree.lowbit(x)
return s
class Solution:
def find132pattern(self, nums: List[int]) -> bool:
s = sorted(set(nums))
m = {v: i for i, v in enumerate(s, 1)}
n = len(m)
tree = BinaryIndexedTree(n)
for v in nums:
tree.update(m[v], 1)
mi = nums[0]
for v in nums:
tree.update(m[v], -1)
# v 右侧存在 (mi, v - 1] 范围内的数字,说明符合 132
if tree.query(m[v] - 1) - tree.query(m[mi]) > 0:
return True
mi = min(mi, v)
return False
class Solution {
public boolean find132pattern(int[] nums) {
int ak = Integer.MIN_VALUE;
Deque<Integer> stack = new ArrayDeque<>();
for (int i = nums.length - 1; i >= 0; --i) {
if (nums[i] < ak) {
return true;
}
while (!stack.isEmpty() && nums[i] > stack.peek()) {
ak = stack.pop();
}
stack.push(nums[i]);
}
return false;
}
}
class BinaryIndexedTree {
private int n;
private int[] c;
public BinaryIndexedTree(int n) {
this.n = n;
c = new int[n + 1];
}
public void update(int x, int delta) {
while (x <= n) {
c[x] += delta;
x += lowbit(x);
}
}
public int query(int x) {
int s = 0;
while (x > 0) {
s += c[x];
x -= lowbit(x);
}
return s;
}
public static int lowbit(int x) {
return x & -x;
}
}
class Solution {
public boolean find132pattern(int[] nums) {
TreeSet<Integer> ts = new TreeSet();
for (int v : nums) {
ts.add(v);
}
int idx = 1;
Map<Integer, Integer> m = new HashMap<>();
for (int v : ts) {
m.put(v, idx++);
}
int n = m.size();
BinaryIndexedTree tree = new BinaryIndexedTree(n);
for (int v : nums) {
tree.update(m.get(v), 1);
}
int mi = nums[0];
for (int v : nums) {
int x = m.get(v);
tree.update(x, -1);
if (tree.query(x - 1) - tree.query(m.get(mi)) > 0) {
return true;
}
mi = Math.min(mi, v);
}
return false;
}
}
function find132pattern(nums: number[]): boolean {
const n = nums.length;
if (n < 3) {
return false;
}
let last = -Infinity;
const stack = [];
for (let i = n - 1; i >= 0; i--) {
const num = nums[i];
if (num < last) {
return true;
}
while (stack[stack.length - 1] < num) {
last = Math.max(last, stack.pop());
}
stack.push(num);
}
return false;
}
impl Solution {
pub fn find132pattern(nums: Vec<i32>) -> bool {
let n = nums.len();
if n < 3 {
return false;
}
let mut last = i32::MIN;
let mut stack = vec![];
for i in (0..n).rev() {
if nums[i] < last {
return true;
}
while !stack.is_empty() && stack.last().unwrap() < &nums[i] {
last = stack.pop().unwrap();
}
stack.push(nums[i])
}
false
}
}
class BinaryIndexedTree {
public:
int n;
vector<int> c;
BinaryIndexedTree(int _n): n(_n), c(_n + 1){}
void update(int x, int delta) {
while (x <= n)
{
c[x] += delta;
x += lowbit(x);
}
}
int query(int x) {
int s = 0;
while (x > 0)
{
s += c[x];
x -= lowbit(x);
}
return s;
}
int lowbit(int x) {
return x & -x;
}
};
class Solution {
public:
bool find132pattern(vector<int>& nums) {
unordered_set<int> s(nums.begin(), nums.end());
vector<int> alls(s.begin(), s.end());
sort(alls.begin(), alls.end());
unordered_map<int, int> m;
int n = alls.size();
for (int i = 0; i < n; ++i) m[alls[i]] = i + 1;
BinaryIndexedTree* tree = new BinaryIndexedTree(n);
for (int v : nums) tree->update(m[v], 1);
int mi = nums[0];
for (int v : nums)
{
tree->update(m[v], -1);
if (tree->query(m[v] - 1) - tree->query(m[mi]) > 0) return true;
mi = min(mi, v);
}
return false;
}
};
type BinaryIndexedTree struct {
n int
c []int
}
func newBinaryIndexedTree(n int) *BinaryIndexedTree {
c := make([]int, n+1)
return &BinaryIndexedTree{n, c}
}
func (this *BinaryIndexedTree) lowbit(x int) int {
return x & -x
}
func (this *BinaryIndexedTree) update(x, delta int) {
for x <= this.n {
this.c[x] += delta
x += this.lowbit(x)
}
}
func (this *BinaryIndexedTree) query(x int) int {
s := 0
for x > 0 {
s += this.c[x]
x -= this.lowbit(x)
}
return s
}
func find132pattern(nums []int) bool {
s := make(map[int]bool)
for _, v := range nums {
s[v] = true
}
var alls []int
for v := range s {
alls = append(alls, v)
}
sort.Ints(alls)
m := make(map[int]int)
for i, v := range alls {
m[v] = i + 1
}
tree := newBinaryIndexedTree(len(m))
for _, v := range nums {
tree.update(m[v], 1)
}
mi := nums[0]
for _, v := range nums {
tree.update(m[v], -1)
if tree.query(m[v]-1)-tree.query(m[mi]) > 0 {
return true
}
if v < mi {
mi = v
}
}
return false
}