「以扣会友」线下活动所在场地由若干主题空间与走廊组成,场地的地图记作由一维字符串型数组 grid
,字符串中仅包含 "0"~"5"
这 6 个字符。地图上每一个字符代表面积为 1 的区域,其中 "0"
表示走廊,其他字符表示主题空间。相同且连续(连续指上、下、左、右四个方向连接)的字符组成同一个主题空间。
假如整个 grid
区域的外侧均为走廊。请问,不与走廊直接相邻的主题空间的最大面积是多少?如果不存在这样的空间请返回 0
。
示例 1:
输入:
grid = ["110","231","221"]
输出:
1
示例 2:
输入:
grid = ["11111100000","21243101111","21224101221","11111101111"]
输出:
3
提示:
1 <= grid.length <= 500
1 <= grid[i].length <= 500
grid[i][j]
仅可能是"0"~"5"
并查集。
并查集模板:
模板 1——朴素并查集:
# 初始化,p存储每个点的父节点
p = list(range(n))
# 返回x的祖宗节点
def find(x):
if p[x] != x:
# 路径压缩
p[x] = find(p[x])
return p[x]
# 合并a和b所在的两个集合
p[find(a)] = find(b)
模板 2——维护 size 的并查集:
# 初始化,p存储每个点的父节点,size只有当节点是祖宗节点时才有意义,表示祖宗节点所在集合中,点的数量
p = list(range(n))
size = [1] * n
# 返回x的祖宗节点
def find(x):
if p[x] != x:
# 路径压缩
p[x] = find(p[x])
return p[x]
# 合并a和b所在的两个集合
if find(a) != find(b):
size[find(b)] += size[find(a)]
p[find(a)] = find(b)
模板 3——维护到祖宗节点距离的并查集:
# 初始化,p存储每个点的父节点,d[x]存储x到p[x]的距离
p = list(range(n))
d = [0] * n
# 返回x的祖宗节点
def find(x):
if p[x] != x:
t = find(p[x])
d[x] += d[p[x]]
p[x] = t
return p[x]
# 合并a和b所在的两个集合
p[find(a)] = find(b)
d[find(a)] = distance
class Solution:
def largestArea(self, grid: List[str]) -> int:
m, n = len(grid), len(grid[0])
p = list(range(m * n + 1))
def find(x):
if p[x] != x:
p[x] = find(p[x])
return p[x]
for i in range(m):
for j in range(n):
if i == 0 or i == m - 1 or j == 0 or j == n - 1 or grid[i][j] == '0':
p[find(i * n + j)] = find(m * n)
else:
for x, y in [(-1, 0), (1, 0), (0, -1), (0, 1)]:
if grid[i + x][j + y] == '0' or grid[i][j] == grid[i + x][j + y]:
p[find(i * n + j)] = find((i + x) * n + j + y)
mp = defaultdict(int)
res = 0
for i in range(m):
for j in range(n):
root = find(i * n + j)
if root != find(m * n):
mp[root] += 1
res = max(res, mp[root])
return res
class Solution {
private int[] p;
private int[][] dirs = new int[][]{{0, -1}, {0, 1}, {1, 0}, {-1, 0}};
public int largestArea(String[] grid) {
int m = grid.length, n = grid[0].length();
p = new int[m * n + 1];
for (int i = 0; i < p.length; ++i) {
p[i] = i;
}
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (i == 0 || i == m - 1 || j == 0 || j == n - 1 || grid[i].charAt(j) == '0') {
p[find(i * n + j)] = find(m * n);
} else {
for (int[] e : dirs) {
if (grid[i + e[0]].charAt(j + e[1]) == '0' || grid[i].charAt(j) == grid[i + e[0]].charAt(j + e[1])) {
p[find(i * n + j)] = find((i + e[0]) * n + j + e[1]);
}
}
}
}
}
Map<Integer, Integer> mp = new HashMap<>();
int res = 0;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
int root = find(i * n + j);
if (root != find(m * n)) {
mp.put(root, mp.getOrDefault(root, 0) + 1);
res = Math.max(res, mp.get(root));
}
}
}
return res;
}
private int find(int x) {
if (p[x] != x) {
p[x] = find(p[x]);
}
return p[x];
}
}
class Solution {
public:
vector<int> p;
int dirs[4][2] = {{0, -1}, {0, 1}, {1, 0}, {-1, 0}};
int largestArea(vector<string>& grid) {
int m = grid.size(), n = grid[0].size();
p.resize(m * n + 1);
for (int i = 0; i < p.size(); ++i) p[i] = i;
for (int i = 0; i < m; ++i)
{
for (int j = 0; j < n; ++j)
{
if (i == 0 || i == m - 1 || j == 0 || j == n - 1 || grid[i][j] == '0')
p[find(i * n + j)] = find(m * n);
else
{
for (auto e : dirs)
{
if (grid[i + e[0]][j + e[1]] == '0' || grid[i][j]== grid[i + e[0]][j + e[1]])
p[find(i * n + j)] = find((i + e[0]) * n + j + e[1]);
}
}
}
}
unordered_map<int, int> mp;
int res = 0;
for (int i = 0; i < m; ++i)
{
for (int j = 0; j < n; ++j)
{
int root = find(i * n + j);
if (root != find(m * n))
{
++mp[root];
res = max(res, mp[root]);
}
}
}
return res;
}
int find(int x) {
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
};
var p []int
func largestArea(grid []string) int {
m, n := len(grid), len(grid[0])
p = make([]int, m*n+1)
for i := 0; i < len(p); i++ {
p[i] = i
}
dirs := [4][2]int{{0, -1}, {0, 1}, {1, 0}, {-1, 0}}
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
if i == 0 || i == m-1 || j == 0 || j == n-1 || grid[i][j] == '0' {
p[find(i*n+j)] = find(m * n)
} else {
for _, e := range dirs {
if grid[i+e[0]][j+e[1]] == '0' || grid[i][j] == grid[i+e[0]][j+e[1]] {
p[find(i*n+j)] = find((i+e[0])*n + j + e[1])
}
}
}
}
}
mp := make(map[int]int, 0)
res := 0
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
root := find(i*n + j)
if root != find(m*n) {
mp[root]++
res = max(res, mp[root])
}
}
}
return res
}
func find(x int) int {
if p[x] != x {
p[x] = find(p[x])
}
return p[x]
}
func max(a, b int) int {
if a > b {
return a
}
return b
}