Skip to content

Latest commit

 

History

History
145 lines (116 loc) · 4.01 KB

File metadata and controls

145 lines (116 loc) · 4.01 KB

English Version

题目描述

我们称一个分割整数数组的方案是 好的 ,当它满足:

  • 数组被分成三个 非空 连续子数组,从左至右分别命名为 left , mid , right 。
  • left 中元素和小于等于 mid 中元素和,mid 中元素和小于等于 right 中元素和。

给你一个 非负 整数数组 nums ,请你返回 好的 分割 nums 方案数目。由于答案可能会很大,请你将结果对 10+ 7 取余后返回。

 

示例 1:

输入:nums = [1,1,1]
输出:1
解释:唯一一种好的分割方案是将 nums 分成 [1] [1] [1] 。

示例 2:

输入:nums = [1,2,2,2,5,0]
输出:3
解释:nums 总共有 3 种好的分割方案:
[1] [2] [2,2,5,0]
[1] [2,2] [2,5,0]
[1,2] [2,2] [5,0]

示例 3:

输入:nums = [3,2,1]
输出:0
解释:没有好的分割方案。

 

提示:

  • 3 <= nums.length <= 105
  • 0 <= nums[i] <= 104

解法

Python3

class Solution:
    def waysToSplit(self, nums: List[int]) -> int:
        mod = 1e9 + 7
        n = len(nums)
        pre = [0] * (n + 1)
        for i in range(1, n + 1):
            pre[i] = pre[i - 1] + nums[i - 1]
        ans = 0
        for i in range(1, n - 1):
            if pre[i] * 3 > pre[n]:
                break
            left, right = i + 1, n - 1
            while left < right:
                mid = (left + right + 1) >> 1
                if pre[mid] - pre[i] <= pre[n] - pre[mid]:
                    left = mid
                else:
                    right = mid - 1
            mid_right = left
            left, right = i + 1, n - 1
            while left < right:
                mid = (left + right) >> 1
                if pre[mid] - pre[i] >= pre[i]:
                    right = mid
                else:
                    left = mid + 1
            ans += (mid_right - left + 1) % mod
        return int(ans % mod)

Java

class Solution {
    public int waysToSplit(int[] nums) {
        double mod = 1e9 + 7;
        int n = nums.length;
        long[] pre = new long[n + 1];
        for (int i = 1; i < n + 1; i++) {
            pre[i] = pre[i - 1] + nums[i - 1];
        }
        double ans = 0;
        for (int i = 1; i < n - 1; i++) {
            if (pre[i] * 3 > pre[n]) {
                break;
            }
            int left = i + 1, right = n - 1;
            while (left < right) {
                int mid = (left + right + 1) >> 1;
                if (pre[mid] - pre[i] <= pre[n] - pre[mid]) {
                    left = mid;
                } else {
                    right = mid - 1;
                }
            }
            int midRight = left;
            left = i + 1; right = n - 1;
            while (left < right) {
                int mid = (left + right) >> 1;
                if (pre[mid] - pre[i] >= pre[i]) {
                    right = mid;
                } else {
                    left = mid + 1;
                }
            }
            ans += (midRight - left + 1) % mod;
        }
        return (int) (ans % mod);
    }
}

...