我们称一个分割整数数组的方案是 好的 ,当它满足:
- 数组被分成三个 非空 连续子数组,从左至右分别命名为
left
,mid
,right
。 left
中元素和小于等于mid
中元素和,mid
中元素和小于等于right
中元素和。
给你一个 非负 整数数组 nums
,请你返回 好的 分割 nums
方案数目。由于答案可能会很大,请你将结果对 109 + 7
取余后返回。
示例 1:
输入:nums = [1,1,1] 输出:1 解释:唯一一种好的分割方案是将 nums 分成 [1] [1] [1] 。
示例 2:
输入:nums = [1,2,2,2,5,0] 输出:3 解释:nums 总共有 3 种好的分割方案: [1] [2] [2,2,5,0] [1] [2,2] [2,5,0] [1,2] [2,2] [5,0]
示例 3:
输入:nums = [3,2,1] 输出:0 解释:没有好的分割方案。
提示:
3 <= nums.length <= 105
0 <= nums[i] <= 104
class Solution:
def waysToSplit(self, nums: List[int]) -> int:
mod = 1e9 + 7
n = len(nums)
pre = [0] * (n + 1)
for i in range(1, n + 1):
pre[i] = pre[i - 1] + nums[i - 1]
ans = 0
for i in range(1, n - 1):
if pre[i] * 3 > pre[n]:
break
left, right = i + 1, n - 1
while left < right:
mid = (left + right + 1) >> 1
if pre[mid] - pre[i] <= pre[n] - pre[mid]:
left = mid
else:
right = mid - 1
mid_right = left
left, right = i + 1, n - 1
while left < right:
mid = (left + right) >> 1
if pre[mid] - pre[i] >= pre[i]:
right = mid
else:
left = mid + 1
ans += (mid_right - left + 1) % mod
return int(ans % mod)
class Solution {
public int waysToSplit(int[] nums) {
double mod = 1e9 + 7;
int n = nums.length;
long[] pre = new long[n + 1];
for (int i = 1; i < n + 1; i++) {
pre[i] = pre[i - 1] + nums[i - 1];
}
double ans = 0;
for (int i = 1; i < n - 1; i++) {
if (pre[i] * 3 > pre[n]) {
break;
}
int left = i + 1, right = n - 1;
while (left < right) {
int mid = (left + right + 1) >> 1;
if (pre[mid] - pre[i] <= pre[n] - pre[mid]) {
left = mid;
} else {
right = mid - 1;
}
}
int midRight = left;
left = i + 1; right = n - 1;
while (left < right) {
int mid = (left + right) >> 1;
if (pre[mid] - pre[i] >= pre[i]) {
right = mid;
} else {
left = mid + 1;
}
}
ans += (midRight - left + 1) % mod;
}
return (int) (ans % mod);
}
}