forked from rescript-lang/rescript
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlam_pass_exits.ml
302 lines (278 loc) · 10.9 KB
/
lam_pass_exits.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
(***********************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the Q Public License version 1.0. *)
(* *)
(***********************************************************************)
(* Adapted for Javascript backend: Hongbo Zhang *)
(*
TODO:
we should have a pass called, always inlinable
as long as its length is smaller than [exit=exit_id], for example
{[
switch(box_name)
{case "":exit=178;break;
case "b":exit=178;break;
case "h":box_type=/* Pp_hbox */0;break;
case "hov":box_type=/* Pp_hovbox */3;break;
case "hv":box_type=/* Pp_hvbox */2;break;
case "v":box_type=/* Pp_vbox */1;break;
default:box_type=invalid_box(/* () */0);}
switch(exit){case 178:box_type=/* Pp_box */4;break}
]}
*)
(* Count occurrences of (exit n ...) statements *)
let count_exit exits i =
try
!(Hashtbl.find exits i)
with
| Not_found -> 0
and incr_exit exits i =
try
incr (Hashtbl.find exits i)
with
| Not_found -> Hashtbl.add exits i (ref 1)
let count_helper (lam : Lambda.lambda) : (int, int ref) Hashtbl.t =
let exits = Hashtbl.create 17 in
let rec count (lam : Lambda.lambda) =
match lam with
| Lstaticraise (i,ls) -> incr_exit exits i ; List.iter count ls
| Lstaticcatch (l1,(i,[]),Lstaticraise (j,[])) ->
(* i will be replaced by j in l1, so each occurence of i in l1
increases j's ref count *)
count l1 ;
let ic = count_exit exits i in
begin try
let r = Hashtbl.find exits j in r := !r + ic
with
| Not_found ->
Hashtbl.add exits j (ref ic)
end
| Lstaticcatch(l1, (i,_), l2) ->
count l1;
(* If l1 does not contain (exit i),
l2 will be removed, so don't count its exits *)
if count_exit exits i > 0
then
count l2
| Lstringswitch(l, sw, d) ->
count l;
List.iter (fun (_, l) -> count l) sw;
begin
match d with
| None -> ()
| Some d ->
(* See https://github.com/ocaml/ocaml/commit/fcf3571123e2c914768e34f1bd17e4cbaaa7d212#diff-704f66c0fa0fc9339230b39ce7d90919
might only necessary for native backend
*)
count d
(* begin match sw with *)
(* | []|[_] -> count d *)
(* | _ -> count d; count d (\** ASK: default will get replicated *\) *)
(* end *)
end
| Lvar _| Lconst _ -> ()
| Lapply(l1, ll, _) -> count l1; List.iter count ll
| Lfunction(_, _, l) -> count l
| Llet(_, _, l1, l2) ->
count l2; count l1
| Lletrec(bindings, body) ->
List.iter (fun (_, l) -> count l) bindings;
count body
| Lprim(_, ll) -> List.iter count ll
| Lswitch(l, sw) ->
count_default sw ;
count l;
List.iter (fun (_, l) -> count l) sw.sw_consts;
List.iter (fun (_, l) -> count l) sw.sw_blocks
| Ltrywith(l1, v, l2) -> count l1; count l2
| Lifthenelse(l1, l2, l3) -> count l1; count l2; count l3
| Lsequence(l1, l2) -> count l1; count l2
| Lwhile(l1, l2) -> count l1; count l2
| Lfor(_, l1, l2, dir, l3) -> count l1; count l2; count l3
| Lassign(_, l) -> count l
| Lsend(_, m, o, ll, _) -> count m; count o; List.iter count ll
| Levent(l, _) -> count l
| Lifused(_, l) -> count l
and count_default sw = match sw.sw_failaction with
| None -> ()
| Some al ->
let nconsts = List.length sw.sw_consts
and nblocks = List.length sw.sw_blocks in
if
nconsts < sw.sw_numconsts && nblocks < sw.sw_numblocks
then
begin (* default action will occur twice in native code *)
count al ; count al
(**
Reason: for pattern match,
we will test whether it is
an integer or block, both have default cases
predicate: [sw_numconsts] vs nconsts
*)
end
else
begin (* default action will occur once *)
assert (nconsts < sw.sw_numconsts || nblocks < sw.sw_numblocks) ;
count al
end in
count lam ;
exits
;;
type subst_tbl = (int, Ident.t list * Lambda.lambda) Hashtbl.t
(*
Second pass simplify ``catch body with (i ...) handler''
- if (exit i ...) does not occur in body, suppress catch
- if (exit i ...) occurs exactly once in body,
substitute it with handler
- If handler is a single variable, replace (exit i ..) with it
*)
(*
Note:
In ``catch body with (i x1 .. xn) handler''
Substituted expression is
let y1 = x1 and ... yn = xn in
handler[x1 <- y1 ; ... ; xn <- yn]
For the sake of preserving the uniqueness of bound variables.
ASKS: This documentation seems outdated
(No alpha conversion of ``handler'' is presently needed, since
substitution of several ``(exit i ...)''
occurs only when ``handler'' is a variable.)
*)
let subst_helper (subst : subst_tbl) query lam =
let rec simplif (lam : Lambda.lambda) =
match lam with
| Lstaticraise (i,[]) ->
begin
match Hashtbl.find subst i with
| _, handler -> handler
| exception Not_found -> lam
end
| Lstaticraise (i,ls) ->
let ls = List.map simplif ls in
begin
match Hashtbl.find subst i with
| xs,handler ->
let ys = List.map Ident.rename xs in
let env =
List.fold_right2
(fun x y t -> Ident.add x (Lambda.Lvar y) t)
xs ys Ident.empty in
List.fold_right2
(fun y l r -> Lambda.Llet (Alias, y, l, r))
ys ls (Lambda.subst_lambda env handler)
| exception Not_found -> Lstaticraise(i,ls)
end
| Lstaticcatch (l1,(i,[]),(Lstaticraise (j,[]) as l2)) ->
Hashtbl.add subst i ([],simplif l2) ;
simplif l1 (** l1 will inline the exit handler *)
| Lstaticcatch (l1,(i,xs),l2) ->
begin
match query i, l2 with
| 0,_ -> simplif l1
(* Note that
for [query] result = 2,
the non-inline cost is
{[
var exit ;
exit = 11
exit = 11
switch(exit){
case exit = 11 : body ; break
}
]}
the inline cost is
{[
the inline cost is
body;
body;
]}
when [i] is negative, we can not inline in general,
since the outer is a traditional [try .. catch] body,
if it is guaranteed to be non throw, then we can inline
*)
| ( _ , Lvar _
| _, Lconst _) ->
Hashtbl.add subst i (xs,simplif l2) ;
simplif l1 (** l1 will inline *)
| 1,_ when i >= 0 -> (** Ask: Note that we have predicate i >=0 *)
Hashtbl.add subst i (xs,simplif l2) ;
simplif l1 (** l1 will inline *)
| j,_ ->
(** TODO: better heuristics, also if we can group same exit code [j]
in a very early stage -- maybe we can define our enhanced [Lambda]
representation and counter can be more precise, for example [apply]
does not need patch from the compiler
FIXME: when inlining, need refresh local bound identifiers
*)
let ok_to_inline = Lam_util.size l2 < 5 && i >=0 && j <=2 in
if ok_to_inline (* && false *)
then
begin
Hashtbl.add subst i (xs,simplif l2) ;
simplif l1 (** l1 will inline *)
end
else Lstaticcatch (simplif l1, (i,xs), simplif l2)
end
| Lvar _|Lconst _ -> lam
| Lapply (l1, ll, loc) -> Lapply(simplif l1, List.map simplif ll, loc)
| Lfunction (kind, params, l) -> Lfunction(kind, params, simplif l)
| Llet (kind, v, l1, l2) -> Llet(kind, v, simplif l1, simplif l2)
| Lletrec (bindings, body) ->
Lletrec( List.map (fun (v, l) -> (v, simplif l)) bindings, simplif body)
| Lprim (p, ll) ->
begin
let ll = List.map simplif ll in
match p, ll with
(* Simplify %revapply, for n-ary functions with n > 1 *)
| Prevapply loc, [x; Lapply (f, args, _)]
| Prevapply loc, [x; Levent (Lapply (f, args, _),_)] ->
Lapply (f, args@[x], Lambda.default_apply_info ~loc ())
| Prevapply loc, [x; f] -> Lapply (f, [x], Lambda.default_apply_info ~loc ())
(* Simplify %apply, for n-ary functions with n > 1 *)
| Pdirapply loc, [Lapply(f, args, _); x]
| Pdirapply loc, [Levent (Lapply (f, args, _),_); x] ->
Lapply (f, args@[x], Lambda.default_apply_info ~loc ())
| Pdirapply loc, [f; x] -> Lapply (f, [x], Lambda.default_apply_info ~loc ())
| _ -> Lprim(p,ll)
end
| Lswitch(l, sw) ->
let new_l = simplif l
and new_consts = List.map (fun (n, e) -> (n, simplif e)) sw.sw_consts
and new_blocks = List.map (fun (n, e) -> (n, simplif e)) sw.sw_blocks
and new_fail = Misc.may_map simplif sw.sw_failaction in
Lswitch
(new_l,
{sw with sw_consts = new_consts ; sw_blocks = new_blocks; sw_failaction = new_fail})
| Lstringswitch(l,sw,d) ->
Lstringswitch
(simplif l,List.map (fun (s,l) -> s,simplif l) sw,
Misc.may_map simplif d)
| Ltrywith (l1, v, l2) -> Ltrywith(simplif l1, v, simplif l2)
| Lifthenelse (l1, l2, l3) -> Lifthenelse(simplif l1, simplif l2, simplif l3)
| Lsequence (l1, l2) -> Lsequence(simplif l1, simplif l2)
| Lwhile (l1, l2) -> Lwhile(simplif l1, simplif l2)
| Lfor (v, l1, l2, dir, l3) ->
Lfor (v, simplif l1, simplif l2, dir, simplif l3)
| Lassign (v, l) -> Lassign(v, simplif l)
| Lsend (k, m, o, ll, loc) ->
Lsend (k, simplif m, simplif o, List.map simplif ll, loc)
| Levent (l, ev) -> Levent(simplif l, ev)
| Lifused (v, l) -> Lifused (v,simplif l)
in
simplif lam
let simplify_exits (lam : Lambda.lambda) =
let exits = count_helper lam in
subst_helper (Hashtbl.create 17 ) (count_exit exits) lam
(* Compile-time beta-reduction of functions immediately applied:
Lapply(Lfunction(Curried, params, body), args, loc) ->
let paramN = argN in ... let param1 = arg1 in body
Lapply(Lfunction(Tupled, params, body), [Lprim(Pmakeblock(args))], loc) ->
let paramN = argN in ... let param1 = arg1 in body
Assumes |args| = |params|.
*)