-
Notifications
You must be signed in to change notification settings - Fork 140
/
Copy pathalog.c
353 lines (318 loc) · 15 KB
/
alog.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
/* ============================================================
Copyright (c) 2002-2015 Advanced Micro Devices, Inc.
All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the
following conditions are met:
+ Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
+ Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
+ Neither the name of Advanced Micro Devices, Inc. nor the
names of its contributors may be used to endorse or
promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL ADVANCED MICRO DEVICES,
INC. OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
It is licensee's responsibility to comply with any export
regulations applicable in licensee's jurisdiction.
============================================================ */
#include "libm_amd.h"
#include "libm_util_amd.h"
#define USE_NANF_WITH_FLAGS
#define USE_INFINITYF_WITH_FLAGS
#define USE_HANDLE_ERRORF
#include "libm_inlines_amd.h"
#undef USE_NANF_WITH_FLAGS
#undef USE_INFINITYF_WITH_FLAGS
#undef USE_HANDLE_ERRORF
#include "libm_errno_amd.h"
/* Deal with errno for out-of-range result */
static inline float
retval_errno_erange_overflow(float x __attribute__((unused)))
{
return -infinityf_with_flags(AMD_F_DIVBYZERO);
}
/* Deal with errno for out-of-range argument */
static inline float
retval_errno_edom(float x __attribute__((unused)))
{
return nanf_with_flags(AMD_F_INVALID);
}
#undef _FUNCNAME
#if defined(COMPILING_LOG10)
#define _FUNCNAME "log10f"
float FN_PROTOTYPE(mth_i_alog10)(float fx)
#elif defined(COMPILING_LOG2)
#define _FUNCNAME "log2f"
float FN_PROTOTYPE(mth_i_alog2)(float fx)
#else
#define _FUNCNAME "logf"
float FN_PROTOTYPE(mth_i_alog)(float fx)
#endif
{
double x = fx;
int xexp;
double r, f, f1, f2, q, u, v, z1, z2, poly;
int index;
__UINT8_T ux;
/*
Computes natural log(x) for float arguments. Algorithm is
basically a promotion of the arguments to double followed
by an inlined version of the double algorithm, simplified
for efficiency (see log_amd.c). Simplifications include:
* Special algorithm for arguments near 1.0 not required
* Scaling of denormalised arguments not required
* Shorter core series approximations used
*/
/* Arrays ln_lead_table and ln_tail_table contain
leading and trailing parts respectively of precomputed
values of natural log(1+i/64), for i = 0, 1, ..., 64.
ln_lead_table contains the first 24 bits of precision,
and ln_tail_table contains a further 53 bits precision. */
static const double ln_lead_table[65] = {
0.00000000000000000000e+00, /* 0x0000000000000000 */
1.55041813850402832031e-02, /* 0x3f8fc0a800000000 */
3.07716131210327148438e-02, /* 0x3f9f829800000000 */
4.58095073699951171875e-02, /* 0x3fa7745800000000 */
6.06245994567871093750e-02, /* 0x3faf0a3000000000 */
7.52233862876892089844e-02, /* 0x3fb341d700000000 */
8.96121263504028320312e-02, /* 0x3fb6f0d200000000 */
1.03796780109405517578e-01, /* 0x3fba926d00000000 */
1.17783010005950927734e-01, /* 0x3fbe270700000000 */
1.31576299667358398438e-01, /* 0x3fc0d77e00000000 */
1.45181953907012939453e-01, /* 0x3fc2955280000000 */
1.58604979515075683594e-01, /* 0x3fc44d2b00000000 */
1.71850204467773437500e-01, /* 0x3fc5ff3000000000 */
1.84922337532043457031e-01, /* 0x3fc7ab8900000000 */
1.97825729846954345703e-01, /* 0x3fc9525a80000000 */
2.10564732551574707031e-01, /* 0x3fcaf3c900000000 */
2.23143517971038818359e-01, /* 0x3fcc8ff780000000 */
2.35566020011901855469e-01, /* 0x3fce270700000000 */
2.47836112976074218750e-01, /* 0x3fcfb91800000000 */
2.59957492351531982422e-01, /* 0x3fd0a324c0000000 */
2.71933674812316894531e-01, /* 0x3fd1675c80000000 */
2.83768117427825927734e-01, /* 0x3fd22941c0000000 */
2.95464158058166503906e-01, /* 0x3fd2e8e280000000 */
3.07025015354156494141e-01, /* 0x3fd3a64c40000000 */
3.18453729152679443359e-01, /* 0x3fd4618bc0000000 */
3.29753279685974121094e-01, /* 0x3fd51aad80000000 */
3.40926527976989746094e-01, /* 0x3fd5d1bd80000000 */
3.51976394653320312500e-01, /* 0x3fd686c800000000 */
3.62905442714691162109e-01, /* 0x3fd739d7c0000000 */
3.73716354370117187500e-01, /* 0x3fd7eaf800000000 */
3.84411692619323730469e-01, /* 0x3fd89a3380000000 */
3.94993782043457031250e-01, /* 0x3fd9479400000000 */
4.05465066432952880859e-01, /* 0x3fd9f323c0000000 */
4.15827870368957519531e-01, /* 0x3fda9cec80000000 */
4.26084339618682861328e-01, /* 0x3fdb44f740000000 */
4.36236739158630371094e-01, /* 0x3fdbeb4d80000000 */
4.46287095546722412109e-01, /* 0x3fdc8ff7c0000000 */
4.56237375736236572266e-01, /* 0x3fdd32fe40000000 */
4.66089725494384765625e-01, /* 0x3fddd46a00000000 */
4.75845873355865478516e-01, /* 0x3fde744240000000 */
4.85507786273956298828e-01, /* 0x3fdf128f40000000 */
4.95077252388000488281e-01, /* 0x3fdfaf5880000000 */
5.04556000232696533203e-01, /* 0x3fe02552a0000000 */
5.13945698738098144531e-01, /* 0x3fe0723e40000000 */
5.23248136043548583984e-01, /* 0x3fe0be72e0000000 */
5.32464742660522460938e-01, /* 0x3fe109f380000000 */
5.41597247123718261719e-01, /* 0x3fe154c3c0000000 */
5.50647079944610595703e-01, /* 0x3fe19ee6a0000000 */
5.59615731239318847656e-01, /* 0x3fe1e85f40000000 */
5.68504691123962402344e-01, /* 0x3fe23130c0000000 */
5.77315330505371093750e-01, /* 0x3fe2795e00000000 */
5.86049020290374755859e-01, /* 0x3fe2c0e9e0000000 */
5.94707071781158447266e-01, /* 0x3fe307d720000000 */
6.03290796279907226562e-01, /* 0x3fe34e2880000000 */
6.11801505088806152344e-01, /* 0x3fe393e0c0000000 */
6.20240390300750732422e-01, /* 0x3fe3d90260000000 */
6.28608644008636474609e-01, /* 0x3fe41d8fe0000000 */
6.36907458305358886719e-01, /* 0x3fe4618bc0000000 */
6.45137906074523925781e-01, /* 0x3fe4a4f840000000 */
6.53301239013671875000e-01, /* 0x3fe4e7d800000000 */
6.61398470401763916016e-01, /* 0x3fe52a2d20000000 */
6.69430613517761230469e-01, /* 0x3fe56bf9c0000000 */
6.77398800849914550781e-01, /* 0x3fe5ad4040000000 */
6.85303986072540283203e-01, /* 0x3fe5ee02a0000000 */
6.93147122859954833984e-01}; /* 0x3fe62e42e0000000 */
static const double ln_tail_table[65] = {
0.00000000000000000000e+00, /* 0x0000000000000000 */
5.15092497094772879206e-09, /* 0x3e361f807c79f3db */
4.55457209735272790188e-08, /* 0x3e6873c1980267c8 */
2.86612990859791781788e-08, /* 0x3e5ec65b9f88c69e */
2.23596477332056055352e-08, /* 0x3e58022c54cc2f99 */
3.49498983167142274770e-08, /* 0x3e62c37a3a125330 */
3.23392843005887000414e-08, /* 0x3e615cad69737c93 */
1.35722380472479366661e-08, /* 0x3e4d256ab1b285e9 */
2.56504325268044191098e-08, /* 0x3e5b8abcb97a7aa2 */
5.81213608741512136843e-08, /* 0x3e6f34239659a5dc */
5.59374849578288093334e-08, /* 0x3e6e07fd48d30177 */
5.06615629004996189970e-08, /* 0x3e6b32df4799f4f6 */
5.24588857848400955725e-08, /* 0x3e6c29e4f4f21cf8 */
9.61968535632653505972e-10, /* 0x3e1086c848df1b59 */
1.34829655346594463137e-08, /* 0x3e4cf456b4764130 */
3.65557749306383026498e-08, /* 0x3e63a02ffcb63398 */
3.33431709374069198903e-08, /* 0x3e61e6a6886b0976 */
5.13008650536088382197e-08, /* 0x3e6b8abcb97a7aa2 */
5.09285070380306053751e-08, /* 0x3e6b578f8aa35552 */
3.20853940845502057341e-08, /* 0x3e6139c871afb9fc */
4.06713248643004200446e-08, /* 0x3e65d5d30701ce64 */
5.57028186706125221168e-08, /* 0x3e6de7bcb2d12142 */
5.48356693724804282546e-08, /* 0x3e6d708e984e1664 */
1.99407553679345001938e-08, /* 0x3e556945e9c72f36 */
1.96585517245087232086e-09, /* 0x3e20e2f613e85bda */
6.68649386072067321503e-09, /* 0x3e3cb7e0b42724f6 */
5.89936034642113390002e-08, /* 0x3e6fac04e52846c7 */
2.85038578721554472484e-08, /* 0x3e5e9b14aec442be */
5.09746772910284482606e-08, /* 0x3e6b5de8034e7126 */
5.54234668933210171467e-08, /* 0x3e6dc157e1b259d3 */
6.29100830926604004874e-09, /* 0x3e3b05096ad69c62 */
2.61974119468563937716e-08, /* 0x3e5c2116faba4cdd */
4.16752115011186398935e-08, /* 0x3e665fcc25f95b47 */
2.47747534460820790327e-08, /* 0x3e5a9a08498d4850 */
5.56922172017964209793e-08, /* 0x3e6de647b1465f77 */
2.76162876992552906035e-08, /* 0x3e5da71b7bf7861d */
7.08169709942321478061e-09, /* 0x3e3e6a6886b09760 */
5.77453510221151779025e-08, /* 0x3e6f0075eab0ef64 */
4.43021445893361960146e-09, /* 0x3e33071282fb989b */
3.15140984357495864573e-08, /* 0x3e60eb43c3f1bed2 */
2.95077445089736670973e-08, /* 0x3e5faf06ecb35c84 */
1.44098510263167149349e-08, /* 0x3e4ef1e63db35f68 */
1.05196987538551827693e-08, /* 0x3e469743fb1a71a5 */
5.23641361722697546261e-08, /* 0x3e6c1cdf404e5796 */
7.72099925253243069458e-09, /* 0x3e4094aa0ada625e */
5.62089493829364197156e-08, /* 0x3e6e2d4c96fde3ec */
3.53090261098577946927e-08, /* 0x3e62f4d5e9a98f34 */
3.80080516835568242269e-08, /* 0x3e6467c96ecc5cbe */
5.66961038386146408282e-08, /* 0x3e6e7040d03dec5a */
4.42287063097349852717e-08, /* 0x3e67bebf4282de36 */
3.45294525105681104660e-08, /* 0x3e6289b11aeb783f */
2.47132034530447431509e-08, /* 0x3e5a891d1772f538 */
3.59655343422487209774e-08, /* 0x3e634f10be1fb591 */
5.51581770357780862071e-08, /* 0x3e6d9ce1d316eb93 */
3.60171867511861372793e-08, /* 0x3e63562a19a9c442 */
1.94511067964296180547e-08, /* 0x3e54e2adf548084c */
1.54137376631349347838e-08, /* 0x3e508ce55cc8c97a */
3.93171034490174464173e-09, /* 0x3e30e2f613e85bda */
5.52990607758839766440e-08, /* 0x3e6db03ebb0227bf */
3.29990737637586136511e-08, /* 0x3e61b75bb09cb098 */
1.18436010922446096216e-08, /* 0x3e496f16abb9df22 */
4.04248680368301346709e-08, /* 0x3e65b3f399411c62 */
2.27418915900284316293e-08, /* 0x3e586b3e59f65355 */
1.70263791333409206020e-08, /* 0x3e52482ceae1ac12 */
5.76999904754328540596e-08}; /* 0x3e6efa39ef35793c */
static const double log2 = 6.931471805599453e-01, /* 0x3fe62e42fefa39ef */
/* Approximating polynomial coefficients */
cb_1 = 8.33333333333333593622e-02, /* 0x3fb5555555555557 */
cb_2 = 1.24999999978138668903e-02; /* 0x3f89999999865ede */
#if defined(COMPILING_LOG10)
static const double log10e =
4.34294481903251827651e-01; /* 0x3fdbcb7b1526e50e */
#elif defined(COMPILING_LOG2)
static const double log2e =
1.44269504088896340735e+00; /* 0x3ff71547652b82fe */
#endif
GET_BITS_DP64(x, ux);
#if !defined(COMPILING_LOG10) && !defined(COMPILING_LOG2)
if (ux == 0x4005bf0a80000000)
/* Treat this, the number closest to e in float arithmetic,
as a special case and return 1.0 */
return 1.0F;
#endif
if ((ux & EXPBITS_DP64) == EXPBITS_DP64) {
/* x is either NaN or infinity */
if (ux & MANTBITS_DP64) {
/* x is NaN */
return fx + fx; /* Raise invalid if it is a signalling NaN */
} else {
/* x is infinity */
if (ux & SIGNBIT_DP64) {
/* x is negative infinity. Return a NaN. */
return retval_errno_edom(fx);
} else
return fx;
}
} else if (!(ux & ~SIGNBIT_DP64)) {
/* x is +/-zero. Return -infinity with div-by-zero flag. */
return retval_errno_erange_overflow(fx);
} else if (ux & SIGNBIT_DP64) {
/* x is negative. Return a NaN. */
return retval_errno_edom(fx);
}
/*
First, we decompose the argument x to the form
x = 2**M * (F1 + F2),
where 1 <= F1+F2 < 2, M has the value of an integer,
F1 = 1 + j/64, j ranges from 0 to 64, and |F2| <= 1/128.
Second, we approximate log( 1 + F2/F1 ) by an odd polynomial
in U, where U = 2 F2 / (2 F2 + F1).
Note that log( 1 + F2/F1 ) = log( 1 + U/2 ) - log( 1 - U/2 ).
The core approximation calculates
Poly = [log( 1 + U/2 ) - log( 1 - U/2 )]/U - 1.
Note that log(1 + U/2) - log(1 - U/2) = 2 arctanh ( U/2 ),
thus, Poly = 2 arctanh( U/2 ) / U - 1.
It is not hard to see that
log(x) = M*log(2) + log(F1) + log( 1 + F2/F1 ).
Hence, we return Z1 = log(F1), and Z2 = log( 1 + F2/F1).
The values of log(F1) are calculated beforehand and stored
in the program.
*/
f = x;
/* Store the exponent of x in xexp and put
f into the range [0.5,1) */
xexp = (int)((ux & EXPBITS_DP64) >> EXPSHIFTBITS_DP64) - EXPBIAS_DP64;
PUT_BITS_DP64((ux & MANTBITS_DP64) | HALFEXPBITS_DP64, f);
/* Now x = 2**xexp * f, 1/2 <= f < 1. */
/* Set index to be the nearest integer to 128*f */
/*
r = 128.0 * f;
index = (int)(r + 0.5);
*/
/* This code instead of the above can save several cycles.
It only works because 64 <= r < 128, so
the nearest integer is always contained in exactly
7 bits, and the right shift is always the same. */
index = (int)((((ux & 0x000fc00000000000) | 0x0010000000000000) >> 46) +
((ux & 0x0000200000000000) >> 45));
z1 = ln_lead_table[index - 64];
q = ln_tail_table[index - 64];
f1 = index * 0.0078125; /* 0.0078125 = 1/128 */
f2 = f - f1;
/* At this point, x = 2**xexp * ( f1 + f2 ) where
f1 = j/128, j = 64, 65, ..., 128 and |f2| <= 1/256. */
/* Calculate u = 2 f2 / ( 2 f1 + f2 ) = f2 / ( f1 + 0.5*f2 ) */
/* u = f2 / (f1 + 0.5 * f2); */
u = f2 / (f1 + 0.5 * f2);
/* Here, |u| <= 2(exp(1/16)-1) / (exp(1/16)+1).
The core approximation calculates
poly = [log(1 + u/2) - log(1 - u/2)]/u - 1 */
v = u * u;
poly = (v * (cb_1 + v * cb_2));
z2 = q + (u + u * poly);
/* Now z1,z2 is an extra-precise approximation of log(f).
Add xexp * log(2) to z1, z2 to get the result log(x). */
r = xexp * log2 + z1 + z2;
#if defined(COMPILING_LOG10)
return (float)(log10e * r);
#elif defined(COMPILING_LOG2)
return (float)(log2e * r);
#else
return (float)r;
#endif
}