-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathpl_geodesic.opencl
210 lines (157 loc) · 5.09 KB
/
pl_geodesic.opencl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
__kernel void pl_sincos(
__global float8 *phi_in,
__global float16 *sincos_out
) {
int i = get_global_id(0);
float8 phi = radians(phi_in[i]);
float8 sinPhi, cosPhi;
sinPhi = sincos(phi, &cosPhi);
sincos_out[i].even = sinPhi;
sincos_out[i].odd = cosPhi;
}
__kernel void pl_sincos1(
__global float16 *phi_in,
__global float16 *sincos_out
) {
int i = get_global_id(0);
float8 phi = radians(phi_in[i].odd);
float8 sinPhi, cosPhi;
sinPhi = sincos(phi, &cosPhi);
sincos_out[i].even = sinPhi;
sincos_out[i].odd = cosPhi;
}
__kernel void pl_inverse_geodesic_s(
__global float2 *lp1_in,
__global float16 *lp2_in,
__global float8 *dist_out,
float radius
) {
int i = get_global_id(0);
int j = get_global_id(1);
int j_size = get_global_size(1);
float lam1 = radians(lp1_in[i].even);
float phi1 = radians(lp1_in[i].odd);
float8 lam2 = radians(lp2_in[j].even);
float8 phi2 = radians(lp2_in[j].odd);
float cosPhi1 = cos(phi1);
float8 cosPhi2 = cos(phi2);
float8 dlam = lam2 - lam1;
float8 dphi = phi2 - phi1;
float8 shp2 = sin(0.5f * dphi);
float8 shl2 = sin(0.5f * dlam);
dist_out[i*j_size+j] = 2.f * radius * asin(sqrt(shp2 * shp2 + cosPhi1 * cosPhi2 * shl2 * shl2));
}
__kernel void pl_forward_geodesic_fixed_distance_s(
__global float2 *lp_in,
__global float2 *phi_sincos,
__global float16 *az_sincos,
__global float16 *lp_out,
float distance,
float sinDistance,
float cosDistance
) {
int i = get_global_id(0);
int j = get_global_id(1);
int j_size = get_global_size(1);
float lam1 = radians(lp_in[i].s0);
float sinPhi = phi_sincos[i].s0;
float cosPhi = phi_sincos[i].s1;
float8 sinAz = az_sincos[j].even;
float8 cosAz = az_sincos[j].odd;
float8 lam2, phi2;
phi2 = asin(sinPhi * cosDistance + cosPhi * sinDistance * cosAz);
lam2 = lam1 + atan2(sinDistance * sinAz,
cosPhi * cosDistance - sinPhi * sinDistance * cosAz);
lp_out[i*j_size+j].even = degrees(pl_mod_pi(lam2));
lp_out[i*j_size+j].odd = degrees(phi2);
}
__kernel void pl_forward_geodesic_fixed_angle_s(
float2 lp_in,
__global float8 *dist,
__global float16 *lp_out,
float azimuth,
float sinAz,
float cosAz
) {
int i = get_global_id(0);
float lam1 = radians(lp_in.s0);
float phi1 = radians(lp_in.s1);
float sinPhi, cosPhi;
float8 sinDistance, cosDistance;
float8 lam2, phi2;
sinPhi = sincos(phi1, &cosPhi);
sinDistance = sincos(dist[i], &cosDistance);
phi2 = asin(sinPhi * cosDistance + cosPhi * sinDistance * cosAz);
lam2 = lam1 + atan2(sinDistance * sinAz,
cosPhi * cosDistance - sinPhi * sinDistance * cosAz);
lp_out[i].even = degrees(pl_mod_pi(lam2));
lp_out[i].odd = degrees(phi2);
}
/* *** SOLUTION OF THE GEODETIC DIRECT PROBLEM AFTER T.VINCENTY */
/* *** MODIFIED RAINSFORD'S METHOD WITH HELMERT'S ELLIPTICAL TERMS */
/* *** EFFECTIVE IN ANY AZIMUTH AND AT ANY DISTANCE SHORT OF ANTIPODAL */
/* *** A IS THE SEMI-MAJOR AXIS OF THE REFERENCE ELLIPSOID */
/* *** F IS THE FLATTENING OF THE REFERENCE ELLIPSOID */
/* *** LATITUDES AND LONGITUDES IN RADIANS POSITIVE NORTH AND EAST */
/* *** AZIMUTHS IN RADIANS CLOCKWISE FROM NORTH */
/* *** GEODESIC DISTANCE S ASSUMED IN UNITS OF SEMI-MAJOR AXIS A */
/* *** PROGRAMMED FOR CDC-6600 BY LCDR L.PFEIFER NGS ROCKVILLE MD 20FEB75 */
/* *** MODIFIED FOR SYSTEM 360 BY JOHN G GERGEN NGS ROCKVILLE MD 750608 */
/* *** ...modified for OpenCL by evan miller (CHICAGO IL) */
/* kernel void pl_forward_geodesic_e(
__global float2 *lp_in,
__global float2 *phi_sincos,
__global float16 *az_sincos,
__global float16 *lp_out,
float distance,
float sinDistance,
float cosDistance,
float flattening
) {
int i = get_global_id(0);
int j = get_global_id(1);
int j_size = get_global_size(1);
float lam1 = lp_in[i].s0;
float phi1 = lp_in[i].s1;
float sinPhi = phi_sincos[i].s0;
float cosPhi = phi_sincos[i].s1;
float8 sinAz = az_sincos[j].even;
float8 cosAz = az_sincos[j].odd;
float8 az21, lam2, phi2;
float r;
float8 c, d, e, x, y, cu, cy, cz, sa, su, tu, sy, c2a;
r = 1.f - flattening;
tu = r * sinPhi / cosPhi;
az21 = select(atan2(tu, cosAz) * 2.f, 0.f, cosAz == 0.f);
cu = 1.f / sqrt(tu * tu + 1.f);
su = tu * cu;
sa = cu * sinAz;
c2a = -sa * sa + 1.f;
x = sqrt((1.f / r / r - 1.f) * c2a + 1.f) + 1.f;
x = (x - 2.f) / x;
c = 1.f - x;
c = (x * x / 4.f + 1.f) / c;
d = (x * .375f * x - 1.f) * x;
tu = distance / r / c;
y = tu;
do {
sy = sincos(y, &cy);
cz = cos(az21 + y);
e = cz * cz * 2.f - 1.f;
c = y;
x = e * cy;
y = e + e - 1.f;
y = (((sy * sy * 4.f - 3.f) * y * cz * d / 6.f + x) * d / 4.f - cz) *
sy * d + tu;
} while (any(fabs(y - c) > EPS7));
az21 = cu * cy * cosAz - su * sy;
phi2 = atan2(su * cy + cu * sy * cosAz, r * hypot(sa, az21));
x = atan2(sy * sinAz, cu * cy - su * sy * cosAz);
c = ((c2a * -3.f + 4.f) * flattening + 4.f) * c2a * flattening / 16.f;
d = ((e * cy * c + cz) * sy * c + y) * sa;
lam2 = lam1 + x - (1.f - c) * d * flattening;
// az21 = atan2(sa, az21) + M_PIF;
lp_out[i*j_size+j].even = lam2;
lp_out[i*j_size+j].odd = phi2;
}
*/