These are the changes in pandas 2.1.0. See :ref:`release` for a full changelog including other versions of pandas.
{{ header }}
PyArrow will become a required dependency of pandas starting with pandas 3.0. This decision was made based on PDEP 10.
This will enable more changes that are hugely beneficial to pandas users, including but not limited to:
- inferring strings as PyArrow backed strings by default enabling a significant reduction of the memory footprint and huge performance improvements.
- inferring more complex dtypes with PyArrow by default, like
Decimal
,lists
,bytes
,structured data
and more. - Better interoperability with other libraries that depend on Apache Arrow.
We are collecting feedback on this decision here.
Previously, all strings were stored in columns with NumPy object dtype by default.
This release introduces an option future.infer_string
that infers all
strings as PyArrow backed strings with dtype "string[pyarrow_numpy]"
instead.
This is a new string dtype implementation that follows NumPy semantics in comparison
operations and will return np.nan
as the missing value indicator.
Setting the option will also infer the dtype "string"
as a :class:`StringDtype` with
storage set to "pyarrow_numpy"
, ignoring the value behind the option
mode.string_storage
.
This option only works if PyArrow is installed. PyArrow backed strings have a significantly reduced memory footprint and provide a big performance improvement compared to NumPy object (:issue:`54430`).
The option can be enabled with:
pd.options.future.infer_string = True
This behavior will become the default with pandas 3.0.
In previous versions of pandas, the results of DataFrame reductions (:meth:`DataFrame.sum` :meth:`DataFrame.mean` etc.) had NumPy dtypes, even when the DataFrames were of extension dtypes. pandas can now keep the dtypes when doing reductions over DataFrame columns with a common dtype (:issue:`52788`).
Old Behavior
In [1]: df = pd.DataFrame({"a": [1, 1, 2, 1], "b": [np.nan, 2.0, 3.0, 4.0]}, dtype="Int64")
In [2]: df.sum()
Out[2]:
a 5
b 9
dtype: int64
In [3]: df = df.astype("int64[pyarrow]")
In [4]: df.sum()
Out[4]:
a 5
b 9
dtype: int64
New Behavior
.. ipython:: python df = pd.DataFrame({"a": [1, 1, 2, 1], "b": [np.nan, 2.0, 3.0, 4.0]}, dtype="Int64") df.sum() df = df.astype("int64[pyarrow]") df.sum()
Notice that the dtype is now a masked dtype and PyArrow dtype, respectively, while previously it was a NumPy integer dtype.
To allow DataFrame reductions to preserve extension dtypes, :meth:`.ExtensionArray._reduce` has gotten a new keyword parameter keepdims
. Calling :meth:`.ExtensionArray._reduce` with keepdims=True
should return an array of length 1 along the reduction axis. In order to maintain backward compatibility, the parameter is not required, but will it become required in the future. If the parameter is not found in the signature, DataFrame reductions can not preserve extension dtypes. Also, if the parameter is not found, a FutureWarning
will be emitted and type checkers like mypy may complain about the signature not being compatible with :meth:`.ExtensionArray._reduce`.
- :meth:`Series.transform` not respecting Copy-on-Write when
func
modifies :class:`Series` inplace (:issue:`53747`) - Calling :meth:`Index.values` will now return a read-only NumPy array (:issue:`53704`)
- Setting a :class:`Series` into a :class:`DataFrame` now creates a lazy instead of a deep copy (:issue:`53142`)
- The :class:`DataFrame` constructor, when constructing a DataFrame from a dictionary
of Index objects and specifying
copy=False
, will now use a lazy copy of those Index objects for the columns of the DataFrame (:issue:`52947`) - A shallow copy of a Series or DataFrame (
df.copy(deep=False)
) will now also return a shallow copy of the rows/columns :class:`Index` objects instead of only a shallow copy of the data, i.e. the index of the result is no longer identical (df.copy(deep=False).index is df.index
is no longer True) (:issue:`53721`) - :meth:`DataFrame.head` and :meth:`DataFrame.tail` will now return deep copies (:issue:`54011`)
- Add lazy copy mechanism to :meth:`DataFrame.eval` (:issue:`53746`)
- Trying to operate inplace on a temporary column selection
(for example,
df["a"].fillna(100, inplace=True)
) will now always raise a warning when Copy-on-Write is enabled. In this mode, operating inplace like this will never work, since the selection behaves as a temporary copy. This holds true for:- DataFrame.update / Series.update
- DataFrame.fillna / Series.fillna
- DataFrame.replace / Series.replace
- DataFrame.clip / Series.clip
- DataFrame.where / Series.where
- DataFrame.mask / Series.mask
- DataFrame.interpolate / Series.interpolate
- DataFrame.ffill / Series.ffill
- DataFrame.bfill / Series.bfill
New :meth:`DataFrame.map` method and support for ExtensionArrays
The :meth:`DataFrame.map` been added and :meth:`DataFrame.applymap` has been deprecated. :meth:`DataFrame.map` has the same functionality as :meth:`DataFrame.applymap`, but the new name better communicates that this is the :class:`DataFrame` version of :meth:`Series.map` (:issue:`52353`).
When given a callable, :meth:`Series.map` applies the callable to all elements of the :class:`Series`. Similarly, :meth:`DataFrame.map` applies the callable to all elements of the :class:`DataFrame`, while :meth:`Index.map` applies the callable to all elements of the :class:`Index`.
Frequently, it is not desirable to apply the callable to nan-like values of the array and to avoid doing
that, the map
method could be called with na_action="ignore"
, i.e. ser.map(func, na_action="ignore")
.
However, na_action="ignore"
was not implemented for many :class:`.ExtensionArray` and Index
types
and na_action="ignore"
did not work correctly for any :class:`.ExtensionArray` subclass except the nullable numeric ones (i.e. with dtype :class:`Int64` etc.).
na_action="ignore"
now works for all array types (:issue:`52219`, :issue:`51645`, :issue:`51809`, :issue:`51936`, :issue:`52033`; :issue:`52096`).
Previous behavior:
In [1]: ser = pd.Series(["a", "b", np.nan], dtype="category")
In [2]: ser.map(str.upper, na_action="ignore")
NotImplementedError
In [3]: df = pd.DataFrame(ser)
In [4]: df.applymap(str.upper, na_action="ignore") # worked for DataFrame
0
0 A
1 B
2 NaN
In [5]: idx = pd.Index(ser)
In [6]: idx.map(str.upper, na_action="ignore")
TypeError: CategoricalIndex.map() got an unexpected keyword argument 'na_action'
New behavior:
.. ipython:: python ser = pd.Series(["a", "b", np.nan], dtype="category") ser.map(str.upper, na_action="ignore") df = pd.DataFrame(ser) df.map(str.upper, na_action="ignore") idx = pd.Index(ser) idx.map(str.upper, na_action="ignore")
Also, note that :meth:`Categorical.map` implicitly has had its na_action
set to "ignore"
by default.
This has been deprecated and the default for :meth:`Categorical.map` will change
to na_action=None
, consistent with all the other array types.
New implementation of :meth:`DataFrame.stack`
pandas has reimplemented :meth:`DataFrame.stack`. To use the new implementation, pass the argument future_stack=True
. This will become the only option in pandas 3.0.
The previous implementation had two main behavioral downsides.
- The previous implementation would unnecessarily introduce NA values into the result. The user could have NA values automatically removed by passing
dropna=True
(the default), but doing this could also remove NA values from the result that existed in the input. See the examples below. - The previous implementation with
sort=True
(the default) would sometimes sort part of the resulting index, and sometimes not. If the input's columns are not a :class:`MultiIndex`, then the resulting index would never be sorted. If the columns are a :class:`MultiIndex`, then in most cases the level(s) in the resulting index that come from stacking the column level(s) would be sorted. In rare cases such level(s) would be sorted in a non-standard order, depending on how the columns were created.
The new implementation (future_stack=True
) will no longer unnecessarily introduce NA values when stacking multiple levels and will never sort. As such, the arguments dropna
and sort
are not utilized and must remain unspecified when using future_stack=True
. These arguments will be removed in the next major release.
.. ipython:: python columns = pd.MultiIndex.from_tuples([("B", "d"), ("A", "c")]) df = pd.DataFrame([[0, 2], [1, 3]], index=["z", "y"], columns=columns) df
In the previous version (future_stack=False
), the default of dropna=True
would remove unnecessarily introduced NA values but still coerce the dtype to float64
in the process. In the new version, no NAs are introduced and so there is no coercion of the dtype.
.. ipython:: python :okwarning: df.stack([0, 1], future_stack=False, dropna=True) df.stack([0, 1], future_stack=True)
If the input contains NA values, the previous version would drop those as well with dropna=True
or introduce new NA values with dropna=False
. The new version persists all values from the input.
.. ipython:: python :okwarning: df = pd.DataFrame([[0, 2], [np.nan, np.nan]], columns=columns) df df.stack([0, 1], future_stack=False, dropna=True) df.stack([0, 1], future_stack=False, dropna=False) df.stack([0, 1], future_stack=True)
- :meth:`Series.ffill` and :meth:`Series.bfill` are now supported for objects with :class:`IntervalDtype` (:issue:`54247`)
- Added
filters
parameter to :func:`read_parquet` to filter out data, compatible with bothengines
(:issue:`53212`) - :meth:`.Categorical.map` and :meth:`CategoricalIndex.map` now have a
na_action
parameter. :meth:`.Categorical.map` implicitly had a default value of"ignore"
forna_action
. This has formally been deprecated and will be changed toNone
in the future. Also notice that :meth:`Series.map` has defaultna_action=None
and calls to series with categorical data will now usena_action=None
unless explicitly set otherwise (:issue:`44279`) - :class:`api.extensions.ExtensionArray` now has a :meth:`~api.extensions.ExtensionArray.map` method (:issue:`51809`)
- :meth:`DataFrame.applymap` now uses the :meth:`~api.extensions.ExtensionArray.map` method of underlying :class:`api.extensions.ExtensionArray` instances (:issue:`52219`)
- :meth:`MultiIndex.sort_values` now supports
na_position
(:issue:`51612`) - :meth:`MultiIndex.sortlevel` and :meth:`Index.sortlevel` gained a new keyword
na_position
(:issue:`51612`) - :meth:`arrays.DatetimeArray.map`, :meth:`arrays.TimedeltaArray.map` and :meth:`arrays.PeriodArray.map` can now take a
na_action
argument (:issue:`51644`) - :meth:`arrays.SparseArray.map` now supports
na_action
(:issue:`52096`). - :meth:`pandas.read_html` now supports the
storage_options
keyword when used with a URL, allowing users to add headers to the outbound HTTP request (:issue:`49944`) - Add :meth:`Index.diff` and :meth:`Index.round` (:issue:`19708`)
- Add
"latex-math"
as an option to theescape
argument of :class:`.Styler` which will not escape all characters between"\("
and"\)"
during formatting (:issue:`51903`) - Add dtype of categories to
repr
information of :class:`CategoricalDtype` (:issue:`52179`) - Adding
engine_kwargs
parameter to :func:`read_excel` (:issue:`52214`) - Classes that are useful for type-hinting have been added to the public API in the new submodule
pandas.api.typing
(:issue:`48577`) - Implemented :attr:`Series.dt.is_month_start`, :attr:`Series.dt.is_month_end`, :attr:`Series.dt.is_year_start`, :attr:`Series.dt.is_year_end`, :attr:`Series.dt.is_quarter_start`, :attr:`Series.dt.is_quarter_end`, :attr:`Series.dt.days_in_month`, :attr:`Series.dt.unit`, :attr:`Series.dt.normalize`, :meth:`Series.dt.day_name`, :meth:`Series.dt.month_name`, :meth:`Series.dt.tz_convert` for :class:`ArrowDtype` with
pyarrow.timestamp
(:issue:`52388`, :issue:`51718`) - :meth:`.DataFrameGroupBy.agg` and :meth:`.DataFrameGroupBy.transform` now support grouping by multiple keys when the index is not a :class:`MultiIndex` for
engine="numba"
(:issue:`53486`) - :meth:`.SeriesGroupBy.agg` and :meth:`.DataFrameGroupBy.agg` now support passing in multiple functions for
engine="numba"
(:issue:`53486`) - :meth:`.SeriesGroupBy.transform` and :meth:`.DataFrameGroupBy.transform` now support passing in a string as the function for
engine="numba"
(:issue:`53579`) - :meth:`DataFrame.stack` gained the
sort
keyword to dictate whether the resulting :class:`MultiIndex` levels are sorted (:issue:`15105`) - :meth:`DataFrame.unstack` gained the
sort
keyword to dictate whether the resulting :class:`MultiIndex` levels are sorted (:issue:`15105`) - :meth:`Series.explode` now supports PyArrow-backed list types (:issue:`53602`)
- :meth:`Series.str.join` now supports
ArrowDtype(pa.string())
(:issue:`53646`) - Add
validate
parameter to :meth:`Categorical.from_codes` (:issue:`50975`) - Added :meth:`.ExtensionArray.interpolate` used by :meth:`Series.interpolate` and :meth:`DataFrame.interpolate` (:issue:`53659`)
- Added
engine_kwargs
parameter to :meth:`DataFrame.to_excel` (:issue:`53220`) - Implemented :func:`api.interchange.from_dataframe` for :class:`DatetimeTZDtype` (:issue:`54239`)
- Implemented
__from_arrow__
on :class:`DatetimeTZDtype` (:issue:`52201`) - Implemented
__pandas_priority__
to allow custom types to take precedence over :class:`DataFrame`, :class:`Series`, :class:`Index`, or :class:`.ExtensionArray` for arithmetic operations, :ref:`see the developer guide <extending.pandas_priority>` (:issue:`48347`) - Improve error message when having incompatible columns using :meth:`DataFrame.merge` (:issue:`51861`)
- Improve error message when setting :class:`DataFrame` with wrong number of columns through :meth:`DataFrame.isetitem` (:issue:`51701`)
- Improved error handling when using :meth:`DataFrame.to_json` with incompatible
index
andorient
arguments (:issue:`52143`) - Improved error message when creating a DataFrame with empty data (0 rows), no index and an incorrect number of columns (:issue:`52084`)
- Improved error message when providing an invalid
index
oroffset
argument to :class:`.VariableOffsetWindowIndexer` (:issue:`54379`) - Let :meth:`DataFrame.to_feather` accept a non-default :class:`Index` and non-string column names (:issue:`51787`)
- Added a new parameter
by_row
to :meth:`Series.apply` and :meth:`DataFrame.apply`. When set toFalse
the supplied callables will always operate on the whole Series or DataFrame (:issue:`53400`, :issue:`53601`). - :meth:`DataFrame.shift` and :meth:`Series.shift` now allow shifting by multiple periods by supplying a list of periods (:issue:`44424`)
- Groupby aggregations with
numba
(such as :meth:`.DataFrameGroupBy.sum`) now can preserve the dtype of the input instead of casting tofloat64
(:issue:`44952`) - Improved error message when :meth:`.DataFrameGroupBy.agg` failed (:issue:`52930`)
- Many read/to_* functions, such as :meth:`DataFrame.to_pickle` and :func:`read_csv`, support forwarding compression arguments to
lzma.LZMAFile
(:issue:`52979`) - Reductions :meth:`Series.argmax`, :meth:`Series.argmin`, :meth:`Series.idxmax`, :meth:`Series.idxmin`, :meth:`Index.argmax`, :meth:`Index.argmin`, :meth:`DataFrame.idxmax`, :meth:`DataFrame.idxmin` are now supported for object-dtype (:issue:`4279`, :issue:`18021`, :issue:`40685`, :issue:`43697`)
- :meth:`DataFrame.to_parquet` and :func:`read_parquet` will now write and read
attrs
respectively (:issue:`54346`) - :meth:`Index.all` and :meth:`Index.any` with floating dtypes and timedelta64 dtypes no longer raise
TypeError
, matching the :meth:`Series.all` and :meth:`Series.any` behavior (:issue:`54566`) - :meth:`Series.cummax`, :meth:`Series.cummin` and :meth:`Series.cumprod` are now supported for pyarrow dtypes with pyarrow version 13.0 and above (:issue:`52085`)
- Added support for the DataFrame Consortium Standard (:issue:`54383`)
- Performance improvement in :meth:`.DataFrameGroupBy.quantile` and :meth:`.SeriesGroupBy.quantile` (:issue:`51722`)
- PyArrow-backed integer dtypes now support bitwise operations (:issue:`54495`)
pandas 2.1.0 supports Python 3.9 and higher.
Some minimum supported versions of dependencies were updated. If installed, we now require:
Package | Minimum Version | Required | Changed |
---|---|---|---|
numpy | 1.22.4 | X | X |
mypy (dev) | 1.4.1 | X | |
beautifulsoup4 | 4.11.1 | X | |
bottleneck | 1.3.4 | X | |
dataframe-api-compat | 0.1.7 | X | |
fastparquet | 0.8.1 | X | |
fsspec | 2022.05.0 | X | |
hypothesis | 6.46.1 | X | |
gcsfs | 2022.05.0 | X | |
jinja2 | 3.1.2 | X | |
lxml | 4.8.0 | X | |
numba | 0.55.2 | X | |
numexpr | 2.8.0 | X | |
openpyxl | 3.0.10 | X | |
pandas-gbq | 0.17.5 | X | |
psycopg2 | 2.9.3 | X | |
pyreadstat | 1.1.5 | X | |
pyqt5 | 5.15.6 | X | |
pytables | 3.7.0 | X | |
pytest | 7.3.2 | X | |
python-snappy | 0.6.1 | X | |
pyxlsb | 1.0.9 | X | |
s3fs | 2022.05.0 | X | |
scipy | 1.8.1 | X | |
sqlalchemy | 1.4.36 | X | |
tabulate | 0.8.10 | X | |
xarray | 2022.03.0 | X | |
xlsxwriter | 3.0.3 | X | |
zstandard | 0.17.0 | X |
For optional libraries the general recommendation is to use the latest version.
See :ref:`install.dependencies` and :ref:`install.optional_dependencies` for more.
- :class:`arrays.PandasArray` has been renamed :class:`.NumpyExtensionArray` and the attached dtype name changed from
PandasDtype
toNumpyEADtype
; importingPandasArray
still works until the next major version (:issue:`53694`)
PDEP-6: https://pandas.pydata.org/pdeps/0006-ban-upcasting.html
Setitem-like operations on Series (or DataFrame columns) which silently upcast the dtype are deprecated and show a warning. Examples of affected operations are:
ser.fillna('foo', inplace=True)
ser.where(ser.isna(), 'foo', inplace=True)
ser.iloc[indexer] = 'foo'
ser.loc[indexer] = 'foo'
df.iloc[indexer, 0] = 'foo'
df.loc[indexer, 'a'] = 'foo'
ser[indexer] = 'foo'
where ser
is a :class:`Series`, df
is a :class:`DataFrame`, and indexer
could be a slice, a mask, a single value, a list or array of values, or any other
allowed indexer.
In a future version, these will raise an error and you should cast to a common dtype first.
Previous behavior:
In [1]: ser = pd.Series([1, 2, 3])
In [2]: ser
Out[2]:
0 1
1 2
2 3
dtype: int64
In [3]: ser[0] = 'not an int64'
In [4]: ser
Out[4]:
0 not an int64
1 2
2 3
dtype: object
New behavior:
In [1]: ser = pd.Series([1, 2, 3])
In [2]: ser
Out[2]:
0 1
1 2
2 3
dtype: int64
In [3]: ser[0] = 'not an int64'
FutureWarning:
Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas.
Value 'not an int64' has dtype incompatible with int64, please explicitly cast to a compatible dtype first.
In [4]: ser
Out[4]:
0 not an int64
1 2
2 3
dtype: object
To retain the current behaviour, in the case above you could cast ser
to object
dtype first:
.. ipython:: python ser = pd.Series([1, 2, 3]) ser = ser.astype('object') ser[0] = 'not an int64' ser
Depending on the use-case, it might be more appropriate to cast to a different dtype.
In the following, for example, we cast to float64
:
.. ipython:: python ser = pd.Series([1, 2, 3]) ser = ser.astype('float64') ser[0] = 1.1 ser
For further reading, please see https://pandas.pydata.org/pdeps/0006-ban-upcasting.html.
Parsing datetimes with mixed time zones is deprecated and shows a warning unless user passes utc=True
to :func:`to_datetime` (:issue:`50887`)
Previous behavior:
In [7]: data = ["2020-01-01 00:00:00+06:00", "2020-01-01 00:00:00+01:00"]
In [8]: pd.to_datetime(data, utc=False)
Out[8]:
Index([2020-01-01 00:00:00+06:00, 2020-01-01 00:00:00+01:00], dtype='object')
New behavior:
In [9]: pd.to_datetime(data, utc=False)
FutureWarning:
In a future version of pandas, parsing datetimes with mixed time zones will raise
a warning unless `utc=True`. Please specify `utc=True` to opt in to the new behaviour
and silence this warning. To create a `Series` with mixed offsets and `object` dtype,
please use `apply` and `datetime.datetime.strptime`.
Index([2020-01-01 00:00:00+06:00, 2020-01-01 00:00:00+01:00], dtype='object')
In order to silence this warning and avoid an error in a future version of pandas,
please specify utc=True
:
.. ipython:: python data = ["2020-01-01 00:00:00+06:00", "2020-01-01 00:00:00+01:00"] pd.to_datetime(data, utc=True)
To create a Series
with mixed offsets and object
dtype, please use apply
and datetime.datetime.strptime
:
.. ipython:: python import datetime as dt data = ["2020-01-01 00:00:00+06:00", "2020-01-01 00:00:00+01:00"] pd.Series(data).apply(lambda x: dt.datetime.strptime(x, '%Y-%m-%d %H:%M:%S%z'))
- Deprecated :attr:`.DataFrameGroupBy.dtypes`, check
dtypes
on the underlying object instead (:issue:`51045`) - Deprecated :attr:`DataFrame._data` and :attr:`Series._data`, use public APIs instead (:issue:`33333`)
- Deprecated :func:`concat` behavior when any of the objects being concatenated have length 0; in the past the dtypes of empty objects were ignored when determining the resulting dtype, in a future version they will not (:issue:`39122`)
- Deprecated :meth:`.Categorical.to_list`, use
obj.tolist()
instead (:issue:`51254`) - Deprecated :meth:`.DataFrameGroupBy.all` and :meth:`.DataFrameGroupBy.any` with datetime64 or :class:`PeriodDtype` values, matching the :class:`Series` and :class:`DataFrame` deprecations (:issue:`34479`)
- Deprecated
axis=1
in :meth:`DataFrame.ewm`, :meth:`DataFrame.rolling`, :meth:`DataFrame.expanding`, transpose before calling the method instead (:issue:`51778`) - Deprecated
axis=1
in :meth:`DataFrame.groupby` and in :class:`Grouper` constructor, doframe.T.groupby(...)
instead (:issue:`51203`) - Deprecated
broadcast_axis
keyword in :meth:`Series.align` and :meth:`DataFrame.align`, upcast before callingalign
withleft = DataFrame({col: left for col in right.columns}, index=right.index)
(:issue:`51856`) - Deprecated
downcast
keyword in :meth:`Index.fillna` (:issue:`53956`) - Deprecated
fill_method
andlimit
keywords in :meth:`DataFrame.pct_change`, :meth:`Series.pct_change`, :meth:`.DataFrameGroupBy.pct_change`, and :meth:`.SeriesGroupBy.pct_change`, explicitly call e.g. :meth:`DataFrame.ffill` or :meth:`DataFrame.bfill` before callingpct_change
instead (:issue:`53491`) - Deprecated
method
,limit
, andfill_axis
keywords in :meth:`DataFrame.align` and :meth:`Series.align`, explicitly call :meth:`DataFrame.fillna` or :meth:`Series.fillna` on the alignment results instead (:issue:`51856`) - Deprecated
quantile
keyword in :meth:`.Rolling.quantile` and :meth:`.Expanding.quantile`, renamed toq
instead (:issue:`52550`) - Deprecated accepting slices in :meth:`DataFrame.take`, call
obj[slicer]
or pass a sequence of integers instead (:issue:`51539`) - Deprecated behavior of :meth:`DataFrame.idxmax`, :meth:`DataFrame.idxmin`, :meth:`Series.idxmax`, :meth:`Series.idxmin` in with all-NA entries or any-NA and
skipna=False
; in a future version these will raiseValueError
(:issue:`51276`) - Deprecated explicit support for subclassing :class:`Index` (:issue:`45289`)
- Deprecated making functions given to :meth:`Series.agg` attempt to operate on each element in the :class:`Series` and only operate on the whole :class:`Series` if the elementwise operations failed. In the future, functions given to :meth:`Series.agg` will always operate on the whole :class:`Series` only. To keep the current behavior, use :meth:`Series.transform` instead (:issue:`53325`)
- Deprecated making the functions in a list of functions given to :meth:`DataFrame.agg` attempt to operate on each element in the :class:`DataFrame` and only operate on the columns of the :class:`DataFrame` if the elementwise operations failed. To keep the current behavior, use :meth:`DataFrame.transform` instead (:issue:`53325`)
- Deprecated passing a :class:`DataFrame` to :meth:`DataFrame.from_records`, use :meth:`DataFrame.set_index` or :meth:`DataFrame.drop` instead (:issue:`51353`)
- Deprecated silently dropping unrecognized timezones when parsing strings to datetimes (:issue:`18702`)
- Deprecated the
axis
keyword in :meth:`DataFrame.ewm`, :meth:`Series.ewm`, :meth:`DataFrame.rolling`, :meth:`Series.rolling`, :meth:`DataFrame.expanding`, :meth:`Series.expanding` (:issue:`51778`) - Deprecated the
axis
keyword in :meth:`DataFrame.resample`, :meth:`Series.resample` (:issue:`51778`) - Deprecated the
downcast
keyword in :meth:`Series.interpolate`, :meth:`DataFrame.interpolate`, :meth:`Series.fillna`, :meth:`DataFrame.fillna`, :meth:`Series.ffill`, :meth:`DataFrame.ffill`, :meth:`Series.bfill`, :meth:`DataFrame.bfill` (:issue:`40988`) - Deprecated the behavior of :func:`concat` with both
len(keys) != len(objs)
, in a future version this will raise instead of truncating to the shorter of the two sequences (:issue:`43485`) - Deprecated the behavior of :meth:`Series.argsort` in the presence of NA values; in a future version these will be sorted at the end instead of giving -1 (:issue:`54219`)
- Deprecated the default of
observed=False
in :meth:`DataFrame.groupby` and :meth:`Series.groupby`; this will default toTrue
in a future version (:issue:`43999`) - Deprecating pinning
group.name
to each group in :meth:`.SeriesGroupBy.aggregate` aggregations; if your operation requires utilizing the groupby keys, iterate over the groupby object instead (:issue:`41090`) - Deprecated the
axis
keyword in :meth:`.DataFrameGroupBy.idxmax`, :meth:`.DataFrameGroupBy.idxmin`, :meth:`.DataFrameGroupBy.fillna`, :meth:`.DataFrameGroupBy.take`, :meth:`.DataFrameGroupBy.skew`, :meth:`.DataFrameGroupBy.rank`, :meth:`.DataFrameGroupBy.cumprod`, :meth:`.DataFrameGroupBy.cumsum`, :meth:`.DataFrameGroupBy.cummax`, :meth:`.DataFrameGroupBy.cummin`, :meth:`.DataFrameGroupBy.pct_change`, :meth:`.DataFrameGroupBy.diff`, :meth:`.DataFrameGroupBy.shift`, and :meth:`.DataFrameGroupBy.corrwith`; foraxis=1
operate on the underlying :class:`DataFrame` instead (:issue:`50405`, :issue:`51046`) - Deprecated :class:`.DataFrameGroupBy` with
as_index=False
not including groupings in the result when they are not columns of the DataFrame (:issue:`49519`) - Deprecated :func:`is_categorical_dtype`, use
isinstance(obj.dtype, pd.CategoricalDtype)
instead (:issue:`52527`) - Deprecated :func:`is_datetime64tz_dtype`, check
isinstance(dtype, pd.DatetimeTZDtype)
instead (:issue:`52607`) - Deprecated :func:`is_int64_dtype`, check
dtype == np.dtype(np.int64)
instead (:issue:`52564`) - Deprecated :func:`is_interval_dtype`, check
isinstance(dtype, pd.IntervalDtype)
instead (:issue:`52607`) - Deprecated :func:`is_period_dtype`, check
isinstance(dtype, pd.PeriodDtype)
instead (:issue:`52642`) - Deprecated :func:`is_sparse`, check
isinstance(dtype, pd.SparseDtype)
instead (:issue:`52642`) - Deprecated :meth:`.Styler.applymap_index`. Use the new :meth:`.Styler.map_index` method instead (:issue:`52708`)
- Deprecated :meth:`.Styler.applymap`. Use the new :meth:`.Styler.map` method instead (:issue:`52708`)
- Deprecated :meth:`DataFrame.applymap`. Use the new :meth:`DataFrame.map` method instead (:issue:`52353`)
- Deprecated :meth:`DataFrame.swapaxes` and :meth:`Series.swapaxes`, use :meth:`DataFrame.transpose` or :meth:`Series.transpose` instead (:issue:`51946`)
- Deprecated
freq
parameter in :class:`.PeriodArray` constructor, passdtype
instead (:issue:`52462`) - Deprecated allowing non-standard inputs in :func:`take`, pass either a
numpy.ndarray
, :class:`.ExtensionArray`, :class:`Index`, or :class:`Series` (:issue:`52981`) - Deprecated allowing non-standard sequences for :func:`isin`, :func:`value_counts`, :func:`unique`, :func:`factorize`, case to one of
numpy.ndarray
, :class:`Index`, :class:`.ExtensionArray`, or :class:`Series` before calling (:issue:`52986`) - Deprecated behavior of :class:`DataFrame` reductions
sum
,prod
,std
,var
,sem
withaxis=None
, in a future version this will operate over both axes returning a scalar instead of behaving likeaxis=0
; note this also affects numpy functions e.g.np.sum(df)
(:issue:`21597`) - Deprecated behavior of :func:`concat` when :class:`DataFrame` has columns that are all-NA, in a future version these will not be discarded when determining the resulting dtype (:issue:`40893`)
- Deprecated behavior of :meth:`Series.dt.to_pydatetime`, in a future version this will return a :class:`Series` containing python
datetime
objects instead of anndarray
of datetimes; this matches the behavior of other :attr:`Series.dt` properties (:issue:`20306`) - Deprecated logical operations (
|
,&
,^
) between pandas objects and dtype-less sequences (e.g.list
,tuple
), wrap a sequence in a :class:`Series` or NumPy array before operating instead (:issue:`51521`) - Deprecated parameter
convert_type
in :meth:`Series.apply` (:issue:`52140`) - Deprecated passing a dictionary to :meth:`.SeriesGroupBy.agg`; pass a list of aggregations instead (:issue:`50684`)
- Deprecated the
fastpath
keyword in :class:`Categorical` constructor, use :meth:`Categorical.from_codes` instead (:issue:`20110`) - Deprecated the behavior of :func:`is_bool_dtype` returning
True
for object-dtype :class:`Index` of bool objects (:issue:`52680`) - Deprecated the methods :meth:`Series.bool` and :meth:`DataFrame.bool` (:issue:`51749`)
- Deprecated unused
closed
andnormalize
keywords in the :class:`DatetimeIndex` constructor (:issue:`52628`) - Deprecated unused
closed
keyword in the :class:`TimedeltaIndex` constructor (:issue:`52628`) - Deprecated logical operation between two non boolean :class:`Series` with different indexes always coercing the result to bool dtype. In a future version, this will maintain the return type of the inputs (:issue:`52500`, :issue:`52538`)
- Deprecated :class:`Period` and :class:`PeriodDtype` with
BDay
freq, use a :class:`DatetimeIndex` withBDay
freq instead (:issue:`53446`) - Deprecated :func:`value_counts`, use
pd.Series(obj).value_counts()
instead (:issue:`47862`) - Deprecated :meth:`Series.first` and :meth:`DataFrame.first`; create a mask and filter using
.loc
instead (:issue:`45908`) - Deprecated :meth:`Series.interpolate` and :meth:`DataFrame.interpolate` for object-dtype (:issue:`53631`)
- Deprecated :meth:`Series.last` and :meth:`DataFrame.last`; create a mask and filter using
.loc
instead (:issue:`53692`) - Deprecated allowing arbitrary
fill_value
in :class:`SparseDtype`, in a future version thefill_value
will need to be compatible with thedtype.subtype
, either a scalar that can be held by that subtype orNaN
for integer or bool subtypes (:issue:`23124`) - Deprecated allowing bool dtype in :meth:`.DataFrameGroupBy.quantile` and :meth:`.SeriesGroupBy.quantile`, consistent with the :meth:`Series.quantile` and :meth:`DataFrame.quantile` behavior (:issue:`51424`)
- Deprecated behavior of :func:`.testing.assert_series_equal` and :func:`.testing.assert_frame_equal` considering NA-like values (e.g.
NaN
vsNone
as equivalent) (:issue:`52081`) - Deprecated bytes input to :func:`read_excel`. To read a file path, use a string or path-like object (:issue:`53767`)
- Deprecated constructing :class:`.SparseArray` from scalar data, pass a sequence instead (:issue:`53039`)
- Deprecated falling back to filling when
value
is not specified in :meth:`DataFrame.replace` and :meth:`Series.replace` with non-dict-liketo_replace
(:issue:`33302`) - Deprecated literal json input to :func:`read_json`. Wrap literal json string input in
io.StringIO
instead (:issue:`53409`) - Deprecated literal string input to :func:`read_xml`. Wrap literal string/bytes input in
io.StringIO
/io.BytesIO
instead (:issue:`53767`) - Deprecated literal string/bytes input to :func:`read_html`. Wrap literal string/bytes input in
io.StringIO
/io.BytesIO
instead (:issue:`53767`) - Deprecated option
mode.use_inf_as_na
, convert inf entries toNaN
before instead (:issue:`51684`) - Deprecated parameter
obj
in :meth:`.DataFrameGroupBy.get_group` (:issue:`53545`) - Deprecated positional indexing on :class:`Series` with :meth:`Series.__getitem__` and :meth:`Series.__setitem__`, in a future version
ser[item]
will always interpretitem
as a label, not a position (:issue:`50617`) - Deprecated replacing builtin and NumPy functions in
.agg
,.apply
, and.transform
; use the corresponding string alias (e.g."sum"
forsum
ornp.sum
) instead (:issue:`53425`) - Deprecated strings
T
,t
,L
andl
denoting units in :func:`to_timedelta` (:issue:`52536`) - Deprecated the "method" and "limit" keywords in
.ExtensionArray.fillna
, implement_pad_or_backfill
instead (:issue:`53621`) - Deprecated the
method
andlimit
keywords in :meth:`DataFrame.replace` and :meth:`Series.replace` (:issue:`33302`) - Deprecated the
method
andlimit
keywords on :meth:`Series.fillna`, :meth:`DataFrame.fillna`, :meth:`.SeriesGroupBy.fillna`, :meth:`.DataFrameGroupBy.fillna`, and :meth:`.Resampler.fillna`, useobj.bfill()
orobj.ffill()
instead (:issue:`53394`) - Deprecated the behavior of :meth:`Series.__getitem__`, :meth:`Series.__setitem__`, :meth:`DataFrame.__getitem__`, :meth:`DataFrame.__setitem__` with an integer slice on objects with a floating-dtype index, in a future version this will be treated as positional indexing (:issue:`49612`)
- Deprecated the use of non-supported datetime64 and timedelta64 resolutions with :func:`pandas.array`. Supported resolutions are: "s", "ms", "us", "ns" resolutions (:issue:`53058`)
- Deprecated values
"pad"
,"ffill"
,"bfill"
,"backfill"
for :meth:`Series.interpolate` and :meth:`DataFrame.interpolate`, useobj.ffill()
orobj.bfill()
instead (:issue:`53581`) - Deprecated the behavior of :meth:`Index.argmax`, :meth:`Index.argmin`, :meth:`Series.argmax`, :meth:`Series.argmin` with either all-NAs and
skipna=True
or any-NAs andskipna=False
returning -1; in a future version this will raiseValueError
(:issue:`33941`, :issue:`33942`) - Deprecated allowing non-keyword arguments in :meth:`DataFrame.to_sql` except
name
andcon
(:issue:`54229`) - Deprecated silently ignoring
fill_value
when passing bothfreq
andfill_value
to :meth:`DataFrame.shift`, :meth:`Series.shift` and :meth:`.DataFrameGroupBy.shift`; in a future version this will raiseValueError
(:issue:`53832`)
- Performance improvement in :func:`concat` with homogeneous
np.float64
ornp.float32
dtypes (:issue:`52685`) - Performance improvement in :func:`factorize` for object columns not containing strings (:issue:`51921`)
- Performance improvement in :func:`read_orc` when reading a remote URI file path (:issue:`51609`)
- Performance improvement in :func:`read_parquet` and :meth:`DataFrame.to_parquet` when reading a remote file with
engine="pyarrow"
(:issue:`51609`) - Performance improvement in :func:`read_parquet` on string columns when using
use_nullable_dtypes=True
(:issue:`47345`) - Performance improvement in :meth:`DataFrame.clip` and :meth:`Series.clip` (:issue:`51472`)
- Performance improvement in :meth:`DataFrame.filter` when
items
is given (:issue:`52941`) - Performance improvement in :meth:`DataFrame.first_valid_index` and :meth:`DataFrame.last_valid_index` for extension array dtypes (:issue:`51549`)
- Performance improvement in :meth:`DataFrame.where` when
cond
is backed by an extension dtype (:issue:`51574`) - Performance improvement in :meth:`MultiIndex.set_levels` and :meth:`MultiIndex.set_codes` when
verify_integrity=True
(:issue:`51873`) - Performance improvement in :meth:`MultiIndex.sortlevel` when
ascending
is a list (:issue:`51612`) - Performance improvement in :meth:`Series.combine_first` (:issue:`51777`)
- Performance improvement in :meth:`~arrays.ArrowExtensionArray.fillna` when array does not contain nulls (:issue:`51635`)
- Performance improvement in :meth:`~arrays.ArrowExtensionArray.isna` when array has zero nulls or is all nulls (:issue:`51630`)
- Performance improvement when parsing strings to
boolean[pyarrow]
dtype (:issue:`51730`) - Performance improvement when searching an :class:`Index` sliced from other indexes (:issue:`51738`)
- Performance improvement in :func:`concat` (:issue:`52291`, :issue:`52290`)
- :class:`Period`'s default formatter (
period_format
) is now significantly (~twice) faster. This improves performance ofstr(Period)
,repr(Period)
, and :meth:`.Period.strftime(fmt=None)`, as well as.PeriodArray.strftime(fmt=None)
,.PeriodIndex.strftime(fmt=None)
and.PeriodIndex.format(fmt=None)
.to_csv
operations involving :class:`.PeriodArray` or :class:`PeriodIndex` with defaultdate_format
are also significantly accelerated (:issue:`51459`) - Performance improvement accessing :attr:`arrays.IntegerArrays.dtype` & :attr:`arrays.FloatingArray.dtype` (:issue:`52998`)
- Performance improvement for :class:`.DataFrameGroupBy`/:class:`.SeriesGroupBy` aggregations (e.g. :meth:`.DataFrameGroupBy.sum`) with
engine="numba"
(:issue:`53731`) - Performance improvement in :class:`DataFrame` reductions with
axis=1
and extension dtypes (:issue:`54341`) - Performance improvement in :class:`DataFrame` reductions with
axis=None
and extension dtypes (:issue:`54308`) - Performance improvement in :class:`MultiIndex` and multi-column operations (e.g. :meth:`DataFrame.sort_values`, :meth:`DataFrame.groupby`, :meth:`Series.unstack`) when index/column values are already sorted (:issue:`53806`)
- Performance improvement in :class:`Series` reductions (:issue:`52341`)
- Performance improvement in :func:`concat` when
axis=1
and objects have different indexes (:issue:`52541`) - Performance improvement in :func:`concat` when the concatenation axis is a :class:`MultiIndex` (:issue:`53574`)
- Performance improvement in :func:`merge` for PyArrow backed strings (:issue:`54443`)
- Performance improvement in :func:`read_csv` with
engine="c"
(:issue:`52632`) - Performance improvement in :meth:`.ArrowExtensionArray.to_numpy` (:issue:`52525`)
- Performance improvement in :meth:`.DataFrameGroupBy.groups` (:issue:`53088`)
- Performance improvement in :meth:`DataFrame.astype` when
dtype
is an extension dtype (:issue:`54299`) - Performance improvement in :meth:`DataFrame.iloc` when input is an single integer and dataframe is backed by extension dtypes (:issue:`54508`)
- Performance improvement in :meth:`DataFrame.isin` for extension dtypes (:issue:`53514`)
- Performance improvement in :meth:`DataFrame.loc` when selecting rows and columns (:issue:`53014`)
- Performance improvement in :meth:`DataFrame.transpose` when transposing a DataFrame with a single PyArrow dtype (:issue:`54224`)
- Performance improvement in :meth:`DataFrame.transpose` when transposing a DataFrame with a single masked dtype, e.g. :class:`Int64` (:issue:`52836`)
- Performance improvement in :meth:`Series.add` for PyArrow string and binary dtypes (:issue:`53150`)
- Performance improvement in :meth:`Series.corr` and :meth:`Series.cov` for extension dtypes (:issue:`52502`)
- Performance improvement in :meth:`Series.drop_duplicates` for
ArrowDtype
(:issue:`54667`). - Performance improvement in :meth:`Series.ffill`, :meth:`Series.bfill`, :meth:`DataFrame.ffill`, :meth:`DataFrame.bfill` with PyArrow dtypes (:issue:`53950`)
- Performance improvement in :meth:`Series.str.get_dummies` for PyArrow-backed strings (:issue:`53655`)
- Performance improvement in :meth:`Series.str.get` for PyArrow-backed strings (:issue:`53152`)
- Performance improvement in :meth:`Series.str.split` with
expand=True
for PyArrow-backed strings (:issue:`53585`) - Performance improvement in :meth:`Series.to_numpy` when dtype is a NumPy float dtype and
na_value
isnp.nan
(:issue:`52430`) - Performance improvement in :meth:`~arrays.ArrowExtensionArray.astype` when converting from a PyArrow timestamp or duration dtype to NumPy (:issue:`53326`)
- Performance improvement in various :class:`MultiIndex` set and indexing operations (:issue:`53955`)
- Performance improvement when doing various reshaping operations on :class:`arrays.IntegerArray` & :class:`arrays.FloatingArray` by avoiding doing unnecessary validation (:issue:`53013`)
- Performance improvement when indexing with PyArrow timestamp and duration dtypes (:issue:`53368`)
- Performance improvement when passing an array to :meth:`RangeIndex.take`, :meth:`DataFrame.loc`, or :meth:`DataFrame.iloc` and the DataFrame is using a RangeIndex (:issue:`53387`)
- Bug in :meth:`CategoricalIndex.remove_categories` where ordered categories would not be maintained (:issue:`53935`).
- Bug in :meth:`Series.astype` with
dtype="category"
for nullable arrays with read-only null value masks (:issue:`53658`) - Bug in :meth:`Series.map` , where the value of the
na_action
parameter was not used if the series held a :class:`Categorical` (:issue:`22527`).
- :meth:`DatetimeIndex.map` with
na_action="ignore"
now works as expected (:issue:`51644`) - :meth:`DatetimeIndex.slice_indexer` now raises
KeyError
for non-monotonic indexes if either of the slice bounds is not in the index; this behaviour was previously deprecated but inconsistently handled (:issue:`53983`) - Bug in :class:`DateOffset` which had inconsistent behavior when multiplying a :class:`DateOffset` object by a constant (:issue:`47953`)
- Bug in :func:`date_range` when
freq
was a :class:`DateOffset` withnanoseconds
(:issue:`46877`) - Bug in :func:`to_datetime` converting :class:`Series` or :class:`DataFrame` containing :class:`arrays.ArrowExtensionArray` of PyArrow timestamps to numpy datetimes (:issue:`52545`)
- Bug in :meth:`.DatetimeArray.map` and :meth:`DatetimeIndex.map`, where the supplied callable operated array-wise instead of element-wise (:issue:`51977`)
- Bug in :meth:`DataFrame.to_sql` raising
ValueError
for PyArrow-backed date like dtypes (:issue:`53854`) - Bug in :meth:`Timestamp.date`, :meth:`Timestamp.isocalendar`, :meth:`Timestamp.timetuple`, and :meth:`Timestamp.toordinal` were returning incorrect results for inputs outside those supported by the Python standard library's datetime module (:issue:`53668`)
- Bug in :meth:`Timestamp.round` with values close to the implementation bounds returning incorrect results instead of raising
OutOfBoundsDatetime
(:issue:`51494`) - Bug in constructing a :class:`Series` or :class:`DataFrame` from a datetime or timedelta scalar always inferring nanosecond resolution instead of inferring from the input (:issue:`52212`)
- Bug in constructing a :class:`Timestamp` from a string representing a time without a date inferring an incorrect unit (:issue:`54097`)
- Bug in constructing a :class:`Timestamp` with
ts_input=pd.NA
raisingTypeError
(:issue:`45481`) - Bug in parsing datetime strings with weekday but no day e.g. "2023 Sept Thu" incorrectly raising
AttributeError
instead ofValueError
(:issue:`52659`) - Bug in the repr for :class:`Series` when dtype is a timezone aware datetime with non-nanosecond resolution raising
OutOfBoundsDatetime
(:issue:`54623`)
- Bug in :class:`TimedeltaIndex` division or multiplication leading to
.freq
of "0 Days" instead ofNone
(:issue:`51575`) - Bug in :class:`Timedelta` with NumPy
timedelta64
objects not properly raisingValueError
(:issue:`52806`) - Bug in :func:`to_timedelta` converting :class:`Series` or :class:`DataFrame` containing :class:`ArrowDtype` of
pyarrow.duration
to NumPytimedelta64
(:issue:`54298`) - Bug in :meth:`Timedelta.__hash__`, raising an
OutOfBoundsTimedelta
on certain large values of second resolution (:issue:`54037`) - Bug in :meth:`Timedelta.round` with values close to the implementation bounds returning incorrect results instead of raising
OutOfBoundsTimedelta
(:issue:`51494`) - Bug in :meth:`TimedeltaIndex.map` with
na_action="ignore"
(:issue:`51644`) - Bug in :meth:`arrays.TimedeltaArray.map` and :meth:`TimedeltaIndex.map`, where the supplied callable operated array-wise instead of element-wise (:issue:`51977`)
- Bug in :func:`infer_freq` that raises
TypeError
forSeries
of timezone-aware timestamps (:issue:`52456`) - Bug in :meth:`DatetimeTZDtype.base` that always returns a NumPy dtype with nanosecond resolution (:issue:`52705`)
- Bug in :class:`RangeIndex` setting
step
incorrectly when being the subtrahend with minuend a numeric value (:issue:`53255`) - Bug in :meth:`Series.corr` and :meth:`Series.cov` raising
AttributeError
for masked dtypes (:issue:`51422`) - Bug when calling :meth:`Series.kurt` and :meth:`Series.skew` on NumPy data of all zero returning a Python type instead of a NumPy type (:issue:`53482`)
- Bug in :meth:`Series.mean`, :meth:`DataFrame.mean` with object-dtype values containing strings that can be converted to numbers (e.g. "2") returning incorrect numeric results; these now raise
TypeError
(:issue:`36703`, :issue:`44008`) - Bug in :meth:`DataFrame.corrwith` raising
NotImplementedError
for PyArrow-backed dtypes (:issue:`52314`) - Bug in :meth:`DataFrame.size` and :meth:`Series.size` returning 64-bit integer instead of a Python int (:issue:`52897`)
- Bug in :meth:`DateFrame.dot` returning
object
dtype for :class:`ArrowDtype` data (:issue:`53979`) - Bug in :meth:`Series.any`, :meth:`Series.all`, :meth:`DataFrame.any`, and :meth:`DataFrame.all` had the default value of
bool_only
set toNone
instead ofFalse
; this change should have no impact on users (:issue:`53258`) - Bug in :meth:`Series.corr` and :meth:`Series.cov` raising
AttributeError
for masked dtypes (:issue:`51422`) - Bug in :meth:`Series.median` and :meth:`DataFrame.median` with object-dtype values containing strings that can be converted to numbers (e.g. "2") returning incorrect numeric results; these now raise
TypeError
(:issue:`34671`) - Bug in :meth:`Series.sum` converting dtype
uint64
toint64
(:issue:`53401`)
- Bug in :func:`DataFrame.style.to_latex` and :func:`DataFrame.style.to_html` if the DataFrame contains integers with more digits than can be represented by floating point double precision (:issue:`52272`)
- Bug in :func:`array` when given a
datetime64
ortimedelta64
dtype with unit of "s", "us", or "ms" returning :class:`.NumpyExtensionArray` instead of :class:`.DatetimeArray` or :class:`.TimedeltaArray` (:issue:`52859`) - Bug in :func:`array` when given an empty list and no dtype returning :class:`.NumpyExtensionArray` instead of :class:`.FloatingArray` (:issue:`54371`)
- Bug in :meth:`.ArrowDtype.numpy_dtype` returning nanosecond units for non-nanosecond
pyarrow.timestamp
andpyarrow.duration
types (:issue:`51800`) - Bug in :meth:`DataFrame.__repr__` incorrectly raising a
TypeError
when the dtype of a column isnp.record
(:issue:`48526`) - Bug in :meth:`DataFrame.info` raising
ValueError
whenuse_numba
is set (:issue:`51922`) - Bug in :meth:`DataFrame.insert` raising
TypeError
ifloc
isnp.int64
(:issue:`53193`) - Bug in :meth:`HDFStore.select` loses precision of large int when stored and retrieved (:issue:`54186`)
- Bug in :meth:`Series.astype` not supporting
object_
(:issue:`54251`)
- Bug in :meth:`Series.str` that did not raise a
TypeError
when iterated (:issue:`54173`) - Bug in
repr
for :class:`DataFrame`` with string-dtype columns (:issue:`54797`)
- :meth:`IntervalIndex.get_indexer` and :meth:`IntervalIndex.get_indexer_nonunique` raising if
target
is read-only array (:issue:`53703`) - Bug in :class:`IntervalDtype` where the object could be kept alive when deleted (:issue:`54184`)
- Bug in :func:`interval_range` where a float
step
would produce incorrect intervals from floating point artifacts (:issue:`54477`)
- Bug in :meth:`DataFrame.__setitem__` losing dtype when setting a :class:`DataFrame` into duplicated columns (:issue:`53143`)
- Bug in :meth:`DataFrame.__setitem__` with a boolean mask and :meth:`DataFrame.putmask` with mixed non-numeric dtypes and a value other than
NaN
incorrectly raisingTypeError
(:issue:`53291`) - Bug in :meth:`DataFrame.iloc` when using
nan
as the only element (:issue:`52234`) - Bug in :meth:`Series.loc` casting :class:`Series` to
np.dnarray
when assigning :class:`Series` at predefined index ofobject
dtype :class:`Series` (:issue:`48933`)
- Bug in :meth:`DataFrame.interpolate` failing to fill across data when
method
is"pad"
,"ffill"
,"bfill"
, or"backfill"
(:issue:`53898`) - Bug in :meth:`DataFrame.interpolate` ignoring
inplace
when :class:`DataFrame` is empty (:issue:`53199`) - Bug in :meth:`Series.idxmin`, :meth:`Series.idxmax`, :meth:`DataFrame.idxmin`, :meth:`DataFrame.idxmax` with a :class:`DatetimeIndex` index containing
NaT
incorrectly returningNaN
instead ofNaT
(:issue:`43587`) - Bug in :meth:`Series.interpolate` and :meth:`DataFrame.interpolate` failing to raise on invalid
downcast
keyword, which can be onlyNone
or"infer"
(:issue:`53103`) - Bug in :meth:`Series.interpolate` and :meth:`DataFrame.interpolate` with complex dtype incorrectly failing to fill
NaN
entries (:issue:`53635`)
- Bug in :meth:`MultiIndex.set_levels` not preserving dtypes for :class:`Categorical` (:issue:`52125`)
- Bug in displaying a :class:`MultiIndex` with a long element (:issue:`52960`)
- :meth:`DataFrame.to_orc` now raising
ValueError
when non-default :class:`Index` is given (:issue:`51828`) - :meth:`DataFrame.to_sql` now raising
ValueError
when the name param is left empty while using SQLAlchemy to connect (:issue:`52675`) - Bug in :func:`json_normalize` could not parse metadata fields list type (:issue:`37782`)
- Bug in :func:`read_csv` where it would error when
parse_dates
was set to a list or dictionary withengine="pyarrow"
(:issue:`47961`) - Bug in :func:`read_csv` with
engine="pyarrow"
raising when specifying adtype
withindex_col
(:issue:`53229`) - Bug in :func:`read_hdf` not properly closing store after an
IndexError
is raised (:issue:`52781`) - Bug in :func:`read_html` where style elements were read into DataFrames (:issue:`52197`)
- Bug in :func:`read_html` where tail texts were removed together with elements containing
display:none
style (:issue:`51629`) - Bug in :func:`read_sql_table` raising an exception when reading a view (:issue:`52969`)
- Bug in :func:`read_sql` when reading multiple timezone aware columns with the same column name (:issue:`44421`)
- Bug in :func:`read_xml` stripping whitespace in string data (:issue:`53811`)
- Bug in :meth:`DataFrame.to_html` where
colspace
was incorrectly applied in case of multi index columns (:issue:`53885`) - Bug in :meth:`DataFrame.to_html` where conversion for an empty :class:`DataFrame` with complex dtype raised a
ValueError
(:issue:`54167`) - Bug in :meth:`DataFrame.to_json` where :class:`.DateTimeArray`/:class:`.DateTimeIndex` with non nanosecond precision could not be serialized correctly (:issue:`53686`)
- Bug when writing and reading empty Stata dta files where dtype information was lost (:issue:`46240`)
- Bug where
bz2
was treated as a hard requirement (:issue:`53857`)
- Bug in :class:`PeriodDtype` constructor failing to raise
TypeError
when no argument is passed or whenNone
is passed (:issue:`27388`) - Bug in :class:`PeriodDtype` constructor incorrectly returning the same
normalize
for different :class:`DateOffset`freq
inputs (:issue:`24121`) - Bug in :class:`PeriodDtype` constructor raising
ValueError
instead ofTypeError
when an invalid type is passed (:issue:`51790`) - Bug in :class:`PeriodDtype` where the object could be kept alive when deleted (:issue:`54184`)
- Bug in :func:`read_csv` not processing empty strings as a null value, with
engine="pyarrow"
(:issue:`52087`) - Bug in :func:`read_csv` returning
object
dtype columns instead offloat64
dtype columns withengine="pyarrow"
for columns that are all null withengine="pyarrow"
(:issue:`52087`) - Bug in :meth:`Period.now` not accepting the
freq
parameter as a keyword argument (:issue:`53369`) - Bug in :meth:`PeriodIndex.map` with
na_action="ignore"
(:issue:`51644`) - Bug in :meth:`arrays.PeriodArray.map` and :meth:`PeriodIndex.map`, where the supplied callable operated array-wise instead of element-wise (:issue:`51977`)
- Bug in incorrectly allowing construction of :class:`Period` or :class:`PeriodDtype` with :class:`CustomBusinessDay` freq; use :class:`BusinessDay` instead (:issue:`52534`)
- Bug in :meth:`Series.plot` when invoked with
color=None
(:issue:`51953`) - Fixed UserWarning in :meth:`DataFrame.plot.scatter` when invoked with
c="b"
(:issue:`53908`)
- Bug in :meth:`.DataFrameGroupBy.idxmin`, :meth:`.SeriesGroupBy.idxmin`, :meth:`.DataFrameGroupBy.idxmax`, :meth:`.SeriesGroupBy.idxmax` returns wrong dtype when used on an empty DataFrameGroupBy or SeriesGroupBy (:issue:`51423`)
- Bug in :meth:`DataFrame.groupby.rank` on nullable datatypes when passing
na_option="bottom"
orna_option="top"
(:issue:`54206`) - Bug in :meth:`DataFrame.resample` and :meth:`Series.resample` in incorrectly allowing non-fixed
freq
when resampling on a :class:`TimedeltaIndex` (:issue:`51896`) - Bug in :meth:`DataFrame.resample` and :meth:`Series.resample` losing time zone when resampling empty data (:issue:`53664`)
- Bug in :meth:`DataFrame.resample` and :meth:`Series.resample` where
origin
has no effect in resample when values are outside of axis (:issue:`53662`) - Bug in weighted rolling aggregations when specifying
min_periods=0
(:issue:`51449`) - Bug in :meth:`DataFrame.groupby` and :meth:`Series.groupby` where, when the index of the
grouped :class:`Series` or :class:`DataFrame` was a :class:`DatetimeIndex`, :class:`TimedeltaIndex`
or :class:`PeriodIndex`, and the
groupby
method was given a function as its first argument, the function operated on the whole index rather than each element of the index (:issue:`51979`) - Bug in :meth:`.DataFrameGroupBy.agg` with lists not respecting
as_index=False
(:issue:`52849`) - Bug in :meth:`.DataFrameGroupBy.apply` causing an error to be raised when the input :class:`DataFrame` was subset as a :class:`DataFrame` after groupby (
[['a']]
and not['a']
) and the given callable returned :class:`Series` that were not all indexed the same (:issue:`52444`) - Bug in :meth:`.DataFrameGroupBy.apply` raising a
TypeError
when selecting multiple columns and providing a function that returnsnp.ndarray
results (:issue:`18930`) - Bug in :meth:`.DataFrameGroupBy.groups` and :meth:`.SeriesGroupBy.groups` with a datetime key in conjunction with another key produced an incorrect number of group keys (:issue:`51158`)
- Bug in :meth:`.DataFrameGroupBy.quantile` and :meth:`.SeriesGroupBy.quantile` may implicitly sort the result index with
sort=False
(:issue:`53009`) - Bug in :meth:`.SeriesGroupBy.size` where the dtype would be
np.int64
for data with :class:`ArrowDtype` or masked dtypes (e.g.Int64
) (:issue:`53831`) - Bug in :meth:`DataFrame.groupby` with column selection on the resulting groupby object not returning names as tuples when grouping by a list consisting of a single element (:issue:`53500`)
- Bug in :meth:`.DataFrameGroupBy.var` and :meth:`.SeriesGroupBy.var` failing to raise
TypeError
when called with datetime64, timedelta64 or :class:`PeriodDtype` values (:issue:`52128`, :issue:`53045`) - Bug in :meth:`.DataFrameGroupBy.resample` with
kind="period"
raisingAttributeError
(:issue:`24103`) - Bug in :meth:`.Resampler.ohlc` with empty object returning a :class:`Series` instead of empty :class:`DataFrame` (:issue:`42902`)
- Bug in :meth:`.SeriesGroupBy.count` and :meth:`.DataFrameGroupBy.count` where the dtype would be
np.int64
for data with :class:`ArrowDtype` or masked dtypes (e.g.Int64
) (:issue:`53831`) - Bug in :meth:`.SeriesGroupBy.nth` and :meth:`.DataFrameGroupBy.nth` after performing column selection when using
dropna="any"
ordropna="all"
would not subset columns (:issue:`53518`) - Bug in :meth:`.SeriesGroupBy.nth` and :meth:`.DataFrameGroupBy.nth` raised after performing column selection when using
dropna="any"
ordropna="all"
resulted in rows being dropped (:issue:`53518`) - Bug in :meth:`.SeriesGroupBy.sum` and :meth:`.DataFrameGroupBy.sum` summing
np.inf + np.inf
and(-np.inf) + (-np.inf)
tonp.nan
instead ofnp.inf
and-np.inf
respectively (:issue:`53606`) - Bug in :meth:`Series.groupby` raising an error when grouped :class:`Series` has a :class:`DatetimeIndex` index and a :class:`Series` with a name that is a month is given to the
by
argument (:issue:`48509`)
- Bug in :func:`concat` coercing to
object
dtype when one column haspa.null()
dtype (:issue:`53702`) - Bug in :func:`crosstab` when
dropna=False
would not keepnp.nan
in the result (:issue:`10772`) - Bug in :func:`melt` where the
variable
column would lose extension dtypes (:issue:`54297`) - Bug in :func:`merge_asof` raising
KeyError
for extension dtypes (:issue:`52904`) - Bug in :func:`merge_asof` raising
ValueError
for data backed by read-only ndarrays (:issue:`53513`) - Bug in :func:`merge_asof` with
left_index=True
orright_index=True
with mismatched index dtypes giving incorrect results in some cases instead of raisingMergeError
(:issue:`53870`) - Bug in :func:`merge` when merging on integer
ExtensionDtype
and float NumPy dtype raisingTypeError
(:issue:`46178`) - Bug in :meth:`DataFrame.agg` and :meth:`Series.agg` on non-unique columns would return incorrect type when dist-like argument passed in (:issue:`51099`)
- Bug in :meth:`DataFrame.combine_first` ignoring other's columns if
other
is empty (:issue:`53792`) - Bug in :meth:`DataFrame.idxmin` and :meth:`DataFrame.idxmax`, where the axis dtype would be lost for empty frames (:issue:`53265`)
- Bug in :meth:`DataFrame.merge` not merging correctly when having
MultiIndex
with single level (:issue:`52331`) - Bug in :meth:`DataFrame.stack` losing extension dtypes when columns is a :class:`MultiIndex` and frame contains mixed dtypes (:issue:`45740`)
- Bug in :meth:`DataFrame.stack` sorting columns lexicographically (:issue:`53786`)
- Bug in :meth:`DataFrame.transpose` inferring dtype for object column (:issue:`51546`)
- Bug in :meth:`Series.combine_first` converting
int64
dtype tofloat64
and losing precision on very large integers (:issue:`51764`) - Bug when joining empty :class:`DataFrame` objects, where the joined index would be a :class:`RangeIndex` instead of the joined index type (:issue:`52777`)
- Bug in :class:`SparseDtype` constructor failing to raise
TypeError
when given an incompatibledtype
for its subtype, which must be a NumPy dtype (:issue:`53160`) - Bug in :meth:`arrays.SparseArray.map` allowed the fill value to be included in the sparse values (:issue:`52095`)
- Bug in :class:`.ArrowStringArray` constructor raises
ValueError
with dictionary types of strings (:issue:`54074`) - Bug in :class:`DataFrame` constructor not copying :class:`Series` with extension dtype when given in dict (:issue:`53744`)
- Bug in :class:`~arrays.ArrowExtensionArray` converting pandas non-nanosecond temporal objects from non-zero values to zero values (:issue:`53171`)
- Bug in :meth:`Series.quantile` for PyArrow temporal types raising
ArrowInvalid
(:issue:`52678`) - Bug in :meth:`Series.rank` returning wrong order for small values with
Float64
dtype (:issue:`52471`) - Bug in :meth:`Series.unique` for boolean
ArrowDtype
withNA
values (:issue:`54667`) - Bug in :meth:`~arrays.ArrowExtensionArray.__iter__` and :meth:`~arrays.ArrowExtensionArray.__getitem__` returning python datetime and timedelta objects for non-nano dtypes (:issue:`53326`)
- Bug in :meth:`~arrays.ArrowExtensionArray.factorize` returning incorrect uniques for a
pyarrow.dictionary
typepyarrow.chunked_array
with more than one chunk (:issue:`54844`) - Bug when passing an :class:`ExtensionArray` subclass to
dtype
keywords. This will now raise aUserWarning
to encourage passing an instance instead (:issue:`31356`, :issue:`54592`) - Bug where the :class:`DataFrame` repr would not work when a column had an :class:`ArrowDtype` with a
pyarrow.ExtensionDtype
(:issue:`54063`) - Bug where the
__from_arrow__
method of masked ExtensionDtypes (e.g. :class:`Float64Dtype`, :class:`BooleanDtype`) would not accept PyArrow arrays of typepyarrow.null()
(:issue:`52223`)
- Bug in :meth:`.Styler._copy` calling overridden methods in subclasses of :class:`.Styler` (:issue:`52728`)
- Fixed metadata propagation in :meth:`DataFrame.max`, :meth:`DataFrame.min`, :meth:`DataFrame.prod`, :meth:`DataFrame.mean`, :meth:`Series.mode`, :meth:`DataFrame.median`, :meth:`DataFrame.sem`, :meth:`DataFrame.skew`, :meth:`DataFrame.kurt` (:issue:`28283`)
- Fixed metadata propagation in :meth:`DataFrame.squeeze`, and :meth:`DataFrame.describe` (:issue:`28283`)
- Fixed metadata propagation in :meth:`DataFrame.std` (:issue:`28283`)
- Bug in :class:`.FloatingArray.__contains__` with
NaN
item incorrectly returningFalse
whenNaN
values are present (:issue:`52840`) - Bug in :class:`DataFrame` and :class:`Series` raising for data of complex dtype when
NaN
values are present (:issue:`53627`) - Bug in :class:`DatetimeIndex` where
repr
of index passed with time does not print time is midnight and non-day based freq(:issue:`53470`) - Bug in :func:`.testing.assert_frame_equal` and :func:`.testing.assert_series_equal` now throw assertion error for two unequal sets (:issue:`51727`)
- Bug in :func:`.testing.assert_frame_equal` checks category dtypes even when asked not to check index type (:issue:`52126`)
- Bug in :func:`api.interchange.from_dataframe` was not respecting
allow_copy
argument (:issue:`54322`) - Bug in :func:`api.interchange.from_dataframe` was raising during interchanging from non-pandas tz-aware data containing null values (:issue:`54287`)
- Bug in :func:`api.interchange.from_dataframe` when converting an empty DataFrame object (:issue:`53155`)
- Bug in :func:`from_dummies` where the resulting :class:`Index` did not match the original :class:`Index` (:issue:`54300`)
- Bug in :func:`from_dummies` where the resulting data would always be
object
dtype instead of the dtype of the columns (:issue:`54300`) - Bug in :meth:`.DataFrameGroupBy.first`, :meth:`.DataFrameGroupBy.last`, :meth:`.SeriesGroupBy.first`, and :meth:`.SeriesGroupBy.last` where an empty group would return
np.nan
instead of the corresponding :class:`.ExtensionArray` NA value (:issue:`39098`) - Bug in :meth:`DataFrame.pivot_table` with casting the mean of ints back to an int (:issue:`16676`)
- Bug in :meth:`DataFrame.reindex` with a
fill_value
that should be inferred with a :class:`ExtensionDtype` incorrectly inferringobject
dtype (:issue:`52586`) - Bug in :meth:`DataFrame.shift` with
axis=1
on a :class:`DataFrame` with a single :class:`ExtensionDtype` column giving incorrect results (:issue:`53832`) - Bug in :meth:`Index.sort_values` when a
key
is passed (:issue:`52764`) - Bug in :meth:`Series.align`, :meth:`DataFrame.align`, :meth:`Series.reindex`, :meth:`DataFrame.reindex`, :meth:`Series.interpolate`, :meth:`DataFrame.interpolate`, incorrectly failing to raise with method="asfreq" (:issue:`53620`)
- Bug in :meth:`Series.argsort` failing to raise when an invalid
axis
is passed (:issue:`54257`) - Bug in :meth:`Series.map` when giving a callable to an empty series, the returned series had
object
dtype. It now keeps the original dtype (:issue:`52384`) - Bug in :meth:`Series.memory_usage` when
deep=True
throw an error with Series of objects and the returned value is incorrect, as it does not take into account GC corrections (:issue:`51858`) - Bug in :meth:`period_range` the default behavior when freq was not passed as an argument was incorrect(:issue:`53687`)
- Fixed incorrect
__name__
attribute ofpandas._libs.json
(:issue:`52898`)
.. contributors:: v2.0.3..v2.1.0