Warning
The 0.24.x series of releases will be the last to support Python 2. Future feature releases will support Python 3 only. See Dropping Python 2.7 for more details.
{{ header }}
This is a major release from 0.23.4 and includes a number of API changes, new features, enhancements, and performance improvements along with a large number of bug fixes.
Highlights include:
- :ref:`Optional Integer NA Support <whatsnew_0240.enhancements.intna>`
- :ref:`New APIs for accessing the array backing a Series or Index <whatsnew_0240.values_api>`
- :ref:`A new top-level method for creating arrays <whatsnew_0240.enhancements.array>`
- :ref:`Store Interval and Period data in a Series or DataFrame <whatsnew_0240.enhancements.interval>`
- :ref:`Support for joining on two MultiIndexes <whatsnew_0240.enhancements.join_with_two_multiindexes>`
Check the :ref:`API Changes <whatsnew_0240.api_breaking>` and :ref:`deprecations <whatsnew_0240.deprecations>` before updating.
These are the changes in pandas 0.24.0. See :ref:`release` for a full changelog including other versions of pandas.
pandas has gained the ability to hold integer dtypes with missing values. This long requested feature is enabled through the use of :ref:`extension types <extending.extension-types>`.
Note
IntegerArray is currently experimental. Its API or implementation may change without warning.
We can construct a Series
with the specified dtype. The dtype string Int64
is a pandas ExtensionDtype
. Specifying a list or array using the traditional missing value
marker of np.nan
will infer to integer dtype. The display of the Series
will also use the NaN
to indicate missing values in string outputs. (:issue:`20700`, :issue:`20747`, :issue:`22441`, :issue:`21789`, :issue:`22346`)
.. ipython:: python s = pd.Series([1, 2, np.nan], dtype='Int64') s
Operations on these dtypes will propagate NaN
as other pandas operations.
.. ipython:: python # arithmetic s + 1 # comparison s == 1 # indexing s.iloc[1:3] # operate with other dtypes s + s.iloc[1:3].astype('Int8') # coerce when needed s + 0.01
These dtypes can operate as part of a DataFrame
.
.. ipython:: python df = pd.DataFrame({'A': s, 'B': [1, 1, 3], 'C': list('aab')}) df df.dtypes
These dtypes can be merged, reshaped, and casted.
.. ipython:: python pd.concat([df[['A']], df[['B', 'C']]], axis=1).dtypes df['A'].astype(float)
Reduction and groupby operations such as sum
work.
.. ipython:: python df.sum() df.groupby('B').A.sum()
Warning
The Integer NA support currently uses the capitalized dtype version, e.g. Int8
as compared to the traditional int8
. This may be changed at a future date.
See :ref:`integer_na` for more.
:attr:`Series.array` and :attr:`Index.array` have been added for extracting the array backing a
Series
or Index
. (:issue:`19954`, :issue:`23623`)
.. ipython:: python idx = pd.period_range('2000', periods=4) idx.array pd.Series(idx).array
Historically, this would have been done with series.values
, but with
.values
it was unclear whether the returned value would be the actual array,
some transformation of it, or one of pandas custom arrays (like
Categorical
). For example, with :class:`PeriodIndex`, .values
generates
a new ndarray of period objects each time.
.. ipython:: python idx.values id(idx.values) id(idx.values)
If you need an actual NumPy array, use :meth:`Series.to_numpy` or :meth:`Index.to_numpy`.
.. ipython:: python idx.to_numpy() pd.Series(idx).to_numpy()
For Series and Indexes backed by normal NumPy arrays, :attr:`Series.array` will return a new :class:`arrays.PandasArray`, which is a thin (no-copy) wrapper around a :class:`numpy.ndarray`. :class:`~arrays.PandasArray` isn't especially useful on its own, but it does provide the same interface as any extension array defined in pandas or by a third-party library.
.. ipython:: python ser = pd.Series([1, 2, 3]) ser.array ser.to_numpy()
We haven't removed or deprecated :attr:`Series.values` or :attr:`DataFrame.values`, but we
highly recommend and using .array
or .to_numpy()
instead.
See :ref:`Dtypes <basics.dtypes>` and :ref:`Attributes and Underlying Data <basics.attrs>` for more.
A new top-level method :func:`array` has been added for creating 1-dimensional arrays (:issue:`22860`). This can be used to create any :ref:`extension array <extending.extension-types>`, including extension arrays registered by 3rd party libraries. See the :ref:`dtypes docs <basics.dtypes>` for more on extension arrays.
.. ipython:: python pd.array([1, 2, np.nan], dtype='Int64') pd.array(['a', 'b', 'c'], dtype='category')
Passing data for which there isn't dedicated extension type (e.g. float, integer, etc.) will return a new :class:`arrays.PandasArray`, which is just a thin (no-copy) wrapper around a :class:`numpy.ndarray` that satisfies the pandas extension array interface.
.. ipython:: python pd.array([1, 2, 3])
On their own, a :class:`~arrays.PandasArray` isn't a very useful object. But if you need write low-level code that works generically for any :class:`~pandas.api.extensions.ExtensionArray`, :class:`~arrays.PandasArray` satisfies that need.
Notice that by default, if no dtype
is specified, the dtype of the returned
array is inferred from the data. In particular, note that the first example of
[1, 2, np.nan]
would have returned a floating-point array, since NaN
is a float.
.. ipython:: python pd.array([1, 2, np.nan])
:class:`Interval` and :class:`Period` data may now be stored in a :class:`Series` or :class:`DataFrame`, in addition to an :class:`IntervalIndex` and :class:`PeriodIndex` like previously (:issue:`19453`, :issue:`22862`).
.. ipython:: python ser = pd.Series(pd.interval_range(0, 5)) ser ser.dtype
For periods:
.. ipython:: python pser = pd.Series(pd.period_range("2000", freq="D", periods=5)) pser pser.dtype
Previously, these would be cast to a NumPy array with object dtype. In general, this should result in better performance when storing an array of intervals or periods in a :class:`Series` or column of a :class:`DataFrame`.
Use :attr:`Series.array` to extract the underlying array of intervals or periods
from the Series
:
.. ipython:: python ser.array pser.array
These return an instance of :class:`arrays.IntervalArray` or :class:`arrays.PeriodArray`, the new extension arrays that back interval and period data.
Warning
For backwards compatibility, :attr:`Series.values` continues to return
a NumPy array of objects for Interval and Period data. We recommend
using :attr:`Series.array` when you need the array of data stored in the
Series
, and :meth:`Series.to_numpy` when you know you need a NumPy array.
See :ref:`Dtypes <basics.dtypes>` and :ref:`Attributes and Underlying Data <basics.attrs>` for more.
:func:`DataFrame.merge` and :func:`DataFrame.join` can now be used to join multi-indexed Dataframe
instances on the overlapping index levels (:issue:`6360`)
See the :ref:`Merge, join, and concatenate <merging.Join_with_two_multi_indexes>` documentation section.
.. ipython:: python index_left = pd.MultiIndex.from_tuples([('K0', 'X0'), ('K0', 'X1'), ('K1', 'X2')], names=['key', 'X']) left = pd.DataFrame({'A': ['A0', 'A1', 'A2'], 'B': ['B0', 'B1', 'B2']}, index=index_left) index_right = pd.MultiIndex.from_tuples([('K0', 'Y0'), ('K1', 'Y1'), ('K2', 'Y2'), ('K2', 'Y3')], names=['key', 'Y']) right = pd.DataFrame({'C': ['C0', 'C1', 'C2', 'C3'], 'D': ['D0', 'D1', 'D2', 'D3']}, index=index_right) left.join(right)
For earlier versions this can be done using the following.
.. ipython:: python pd.merge(left.reset_index(), right.reset_index(), on=['key'], how='inner').set_index(['key', 'X', 'Y'])
:func:`read_html` previously ignored colspan
and rowspan
attributes.
Now it understands them, treating them as sequences of cells with the same
value. (:issue:`17054`)
.. ipython:: python from io import StringIO result = pd.read_html(StringIO(""" <table> <thead> <tr> <th>A</th><th>B</th><th>C</th> </tr> </thead> <tbody> <tr> <td colspan="2">1</td><td>2</td> </tr> </tbody> </table>"""))
Previous behavior:
In [13]: result
Out [13]:
[ A B C
0 1 2 NaN]
New behavior:
.. ipython:: python result
The :class:`~pandas.io.formats.style.Styler` class has gained a :meth:`~pandas.io.formats.style.Styler.pipe` method. This provides a convenient way to apply users' predefined styling functions, and can help reduce "boilerplate" when using DataFrame styling functionality repeatedly within a notebook. (:issue:`23229`)
.. ipython:: python df = pd.DataFrame({'N': [1250, 1500, 1750], 'X': [0.25, 0.35, 0.50]}) def format_and_align(styler): return (styler.format({'N': '{:,}', 'X': '{:.1%}'}) .set_properties(**{'text-align': 'right'})) df.style.pipe(format_and_align).set_caption('Summary of results.')
Similar methods already exist for other classes in pandas, including :meth:`DataFrame.pipe`, :meth:`GroupBy.pipe() <.GroupBy.pipe>`, and :meth:`Resampler.pipe() <.Resampler.pipe>`.
:func:`DataFrame.rename_axis` now supports index
and columns
arguments
and :func:`Series.rename_axis` supports index
argument (:issue:`19978`).
This change allows a dictionary to be passed so that some of the names
of a MultiIndex
can be changed.
Example:
.. ipython:: python mi = pd.MultiIndex.from_product([list('AB'), list('CD'), list('EF')], names=['AB', 'CD', 'EF']) df = pd.DataFrame(list(range(len(mi))), index=mi, columns=['N']) df df.rename_axis(index={'CD': 'New'})
See the :ref:`Advanced documentation on renaming<advanced.index_names>` for more details.
- :func:`merge` now directly allows merge between objects of type
DataFrame
and namedSeries
, without the need to convert theSeries
object into aDataFrame
beforehand (:issue:`21220`) ExcelWriter
now acceptsmode
as a keyword argument, enabling append to existing workbooks when using theopenpyxl
engine (:issue:`3441`)FrozenList
has gained the.union()
and.difference()
methods. This functionality greatly simplifies groupby's that rely on explicitly excluding certain columns. See :ref:`Splitting an object into groups <groupby.split>` for more information (:issue:`15475`, :issue:`15506`).- :func:`DataFrame.to_parquet` now accepts
index
as an argument, allowing the user to override the engine's default behavior to include or omit the dataframe's indexes from the resulting Parquet file. (:issue:`20768`) - :func:`read_feather` now accepts
columns
as an argument, allowing the user to specify which columns should be read. (:issue:`24025`) - :meth:`DataFrame.corr` and :meth:`Series.corr` now accept a callable for generic calculation methods of correlation, e.g. histogram intersection (:issue:`22684`)
- :func:`DataFrame.to_string` now accepts
decimal
as an argument, allowing the user to specify which decimal separator should be used in the output. (:issue:`23614`) - :func:`DataFrame.to_html` now accepts
render_links
as an argument, allowing the user to generate HTML with links to any URLs that appear in the DataFrame. See the :ref:`section on writing HTML <io.html>` in the IO docs for example usage. (:issue:`2679`) - :func:`pandas.read_csv` now supports pandas extension types as an argument to
dtype
, allowing the user to use pandas extension types when reading CSVs. (:issue:`23228`) - The :meth:`~DataFrame.shift` method now accepts
fill_value
as an argument, allowing the user to specify a value which will be used instead of NA/NaT in the empty periods. (:issue:`15486`) - :func:`to_datetime` now supports the
%Z
and%z
directive when passed intoformat
(:issue:`13486`) - :func:`Series.mode` and :func:`DataFrame.mode` now support the
dropna
parameter which can be used to specify whetherNaN
/NaT
values should be considered (:issue:`17534`) - :func:`DataFrame.to_csv` and :func:`Series.to_csv` now support the
compression
keyword when a file handle is passed. (:issue:`21227`) - :meth:`Index.droplevel` is now implemented also for flat indexes, for compatibility with :class:`MultiIndex` (:issue:`21115`)
- :meth:`Series.droplevel` and :meth:`DataFrame.droplevel` are now implemented (:issue:`20342`)
- Added support for reading from/writing to Google Cloud Storage via the
gcsfs
library (:issue:`19454`, :issue:`23094`) - :func:`DataFrame.to_gbq` and :func:`read_gbq` signature and documentation updated to
reflect changes from the pandas-gbq library version 0.8.0.
Adds a
credentials
argument, which enables the use of any kind of google-auth credentials. (:issue:`21627`, :issue:`22557`, :issue:`23662`) - New method :meth:`HDFStore.walk` will recursively walk the group hierarchy of an HDF5 file (:issue:`10932`)
- :func:`read_html` copies cell data across
colspan
androwspan
, and it treats all-th
table rows as headers ifheader
kwarg is not given and there is nothead
(:issue:`17054`) - :meth:`Series.nlargest`, :meth:`Series.nsmallest`, :meth:`DataFrame.nlargest`, and :meth:`DataFrame.nsmallest` now accept the value
"all"
for thekeep
argument. This keeps all ties for the nth largest/smallest value (:issue:`16818`) - :class:`IntervalIndex` has gained the :meth:`~IntervalIndex.set_closed` method to change the existing
closed
value (:issue:`21670`) - :func:`~DataFrame.to_csv`, :func:`~Series.to_csv`, :func:`~DataFrame.to_json`, and :func:`~Series.to_json` now support
compression='infer'
to infer compression based on filename extension (:issue:`15008`). The default compression forto_csv
,to_json
, andto_pickle
methods has been updated to'infer'
(:issue:`22004`). - :meth:`DataFrame.to_sql` now supports writing
TIMESTAMP WITH TIME ZONE
types for supported databases. For databases that don't support timezones, datetime data will be stored as timezone unaware local timestamps. See the :ref:`io.sql_datetime_data` for implications (:issue:`9086`). - :func:`to_timedelta` now supports iso-formatted timedelta strings (:issue:`21877`)
- :class:`Series` and :class:`DataFrame` now support :class:`Iterable` objects in the constructor (:issue:`2193`)
- :class:`DatetimeIndex` has gained the :attr:`DatetimeIndex.timetz` attribute. This returns the local time with timezone information. (:issue:`21358`)
- :meth:`~Timestamp.round`, :meth:`~Timestamp.ceil`, and :meth:`~Timestamp.floor` for :class:`DatetimeIndex` and :class:`Timestamp`
now support an
ambiguous
argument for handling datetimes that are rounded to ambiguous times (:issue:`18946`) and anonexistent
argument for handling datetimes that are rounded to nonexistent times. See :ref:`timeseries.timezone_nonexistent` (:issue:`22647`) - The result of :meth:`~DataFrame.resample` is now iterable similar to
groupby()
(:issue:`15314`). - :meth:`Series.resample` and :meth:`DataFrame.resample` have gained the :meth:`.Resampler.quantile` (:issue:`15023`).
- :meth:`DataFrame.resample` and :meth:`Series.resample` with a :class:`PeriodIndex` will now respect the
base
argument in the same fashion as with a :class:`DatetimeIndex`. (:issue:`23882`) - :meth:`pandas.api.types.is_list_like` has gained a keyword
allow_sets
which isTrue
by default; ifFalse
, all instances ofset
will not be considered "list-like" anymore (:issue:`23061`) - :meth:`Index.to_frame` now supports overriding column name(s) (:issue:`22580`).
- :meth:`Categorical.from_codes` now can take a
dtype
parameter as an alternative to passingcategories
andordered
(:issue:`24398`). - New attribute
__git_version__
will return git commit sha of current build (:issue:`21295`). - Compatibility with Matplotlib 3.0 (:issue:`22790`).
- Added :meth:`Interval.overlaps`, :meth:`arrays.IntervalArray.overlaps`, and :meth:`IntervalIndex.overlaps` for determining overlaps between interval-like objects (:issue:`21998`)
- :func:`read_fwf` now accepts keyword
infer_nrows
(:issue:`15138`). - :func:`~DataFrame.to_parquet` now supports writing a
DataFrame
as a directory of parquet files partitioned by a subset of the columns whenengine = 'pyarrow'
(:issue:`23283`) - :meth:`Timestamp.tz_localize`, :meth:`DatetimeIndex.tz_localize`, and :meth:`Series.tz_localize` have gained the
nonexistent
argument for alternative handling of nonexistent times. See :ref:`timeseries.timezone_nonexistent` (:issue:`8917`, :issue:`24466`) - :meth:`Index.difference`, :meth:`Index.intersection`, :meth:`Index.union`, and :meth:`Index.symmetric_difference` now have an optional
sort
parameter to control whether the results should be sorted if possible (:issue:`17839`, :issue:`24471`) - :meth:`read_excel` now accepts
usecols
as a list of column names or callable (:issue:`18273`) - :meth:`MultiIndex.to_flat_index` has been added to flatten multiple levels into a single-level :class:`Index` object.
- :meth:`DataFrame.to_stata` and :class:`pandas.io.stata.StataWriter117` can write mixed string columns to Stata strl format (:issue:`23633`)
- :meth:`DataFrame.between_time` and :meth:`DataFrame.at_time` have gained the
axis
parameter (:issue:`8839`) - :meth:`DataFrame.to_records` now accepts
index_dtypes
andcolumn_dtypes
parameters to allow different data types in stored column and index records (:issue:`18146`) - :class:`IntervalIndex` has gained the :attr:`~IntervalIndex.is_overlapping` attribute to indicate if the
IntervalIndex
contains any overlapping intervals (:issue:`23309`) - :func:`pandas.DataFrame.to_sql` has gained the
method
argument to control SQL insertion clause. See the :ref:`insertion method <io.sql.method>` section in the documentation. (:issue:`8953`) - :meth:`DataFrame.corrwith` now supports Spearman's rank correlation, Kendall's tau as well as callable correlation methods. (:issue:`21925`)
- :meth:`DataFrame.to_json`, :meth:`DataFrame.to_csv`, :meth:`DataFrame.to_pickle`, and other export methods now support tilde(~) in path argument. (:issue:`23473`)
pandas 0.24.0 includes a number of API breaking changes.
We have updated our minimum supported versions of dependencies (:issue:`21242`, :issue:`18742`, :issue:`23774`, :issue:`24767`). If installed, we now require:
Package | Minimum Version | Required |
---|---|---|
numpy | 1.12.0 | X |
bottleneck | 1.2.0 | |
fastparquet | 0.2.1 | |
matplotlib | 2.0.0 | |
numexpr | 2.6.1 | |
pandas-gbq | 0.8.0 | |
pyarrow | 0.9.0 | |
pytables | 3.4.2 | |
scipy | 0.18.1 | |
xlrd | 1.0.0 | |
pytest (dev) | 3.6 |
Additionally we no longer depend on feather-format
for feather based storage
and replaced it with references to pyarrow
(:issue:`21639` and :issue:`23053`).
:func:`DataFrame.to_csv` now uses :func:`os.linesep` rather than '\n'
for the default line terminator (:issue:`20353`).
This change only affects when running on Windows, where '\r\n'
was used for line terminator
even when '\n'
was passed in line_terminator
.
Previous behavior on Windows:
In [1]: data = pd.DataFrame({"string_with_lf": ["a\nbc"],
...: "string_with_crlf": ["a\r\nbc"]})
In [2]: # When passing file PATH to to_csv,
...: # line_terminator does not work, and csv is saved with '\r\n'.
...: # Also, this converts all '\n's in the data to '\r\n'.
...: data.to_csv("test.csv", index=False, line_terminator='\n')
In [3]: with open("test.csv", mode='rb') as f:
...: print(f.read())
Out[3]: b'string_with_lf,string_with_crlf\r\n"a\r\nbc","a\r\r\nbc"\r\n'
In [4]: # When passing file OBJECT with newline option to
...: # to_csv, line_terminator works.
...: with open("test2.csv", mode='w', newline='\n') as f:
...: data.to_csv(f, index=False, line_terminator='\n')
In [5]: with open("test2.csv", mode='rb') as f:
...: print(f.read())
Out[5]: b'string_with_lf,string_with_crlf\n"a\nbc","a\r\nbc"\n'
New behavior on Windows:
Passing line_terminator
explicitly, set the line terminator
to that character.
In [1]: data = pd.DataFrame({"string_with_lf": ["a\nbc"],
...: "string_with_crlf": ["a\r\nbc"]})
In [2]: data.to_csv("test.csv", index=False, line_terminator='\n')
In [3]: with open("test.csv", mode='rb') as f:
...: print(f.read())
Out[3]: b'string_with_lf,string_with_crlf\n"a\nbc","a\r\nbc"\n'
On Windows, the value of os.linesep
is '\r\n'
, so if line_terminator
is not
set, '\r\n'
is used for line terminator.
In [1]: data = pd.DataFrame({"string_with_lf": ["a\nbc"],
...: "string_with_crlf": ["a\r\nbc"]})
In [2]: data.to_csv("test.csv", index=False)
In [3]: with open("test.csv", mode='rb') as f:
...: print(f.read())
Out[3]: b'string_with_lf,string_with_crlf\r\n"a\nbc","a\r\nbc"\r\n'
For file objects, specifying newline
is not sufficient to set the line terminator.
You must pass in the line_terminator
explicitly, even in this case.
In [1]: data = pd.DataFrame({"string_with_lf": ["a\nbc"],
...: "string_with_crlf": ["a\r\nbc"]})
In [2]: with open("test2.csv", mode='w', newline='\n') as f:
...: data.to_csv(f, index=False)
In [3]: with open("test2.csv", mode='rb') as f:
...: print(f.read())
Out[3]: b'string_with_lf,string_with_crlf\r\n"a\nbc","a\r\nbc"\r\n'
There was bug in :func:`read_excel` and :func:`read_csv` with the Python
engine, where missing values turned to 'nan'
with dtype=str
and
na_filter=True
. Now, these missing values are converted to the string
missing indicator, np.nan
. (:issue:`20377`)
.. ipython:: python :suppress: from io import StringIO
Previous behavior:
In [5]: data = 'a,b,c\n1,,3\n4,5,6'
In [6]: df = pd.read_csv(StringIO(data), engine='python', dtype=str, na_filter=True)
In [7]: df.loc[0, 'b']
Out[7]:
'nan'
New behavior:
.. ipython:: python data = 'a,b,c\n1,,3\n4,5,6' df = pd.read_csv(StringIO(data), engine='python', dtype=str, na_filter=True) df.loc[0, 'b']
Notice how we now instead output np.nan
itself instead of a stringified form of it.
Previously, parsing datetime strings with UTC offsets with :func:`to_datetime`
or :class:`DatetimeIndex` would automatically convert the datetime to UTC
without timezone localization. This is inconsistent from parsing the same
datetime string with :class:`Timestamp` which would preserve the UTC
offset in the tz
attribute. Now, :func:`to_datetime` preserves the UTC
offset in the tz
attribute when all the datetime strings have the same
UTC offset (:issue:`17697`, :issue:`11736`, :issue:`22457`)
Previous behavior:
In [2]: pd.to_datetime("2015-11-18 15:30:00+05:30")
Out[2]: Timestamp('2015-11-18 10:00:00')
In [3]: pd.Timestamp("2015-11-18 15:30:00+05:30")
Out[3]: Timestamp('2015-11-18 15:30:00+0530', tz='pytz.FixedOffset(330)')
# Different UTC offsets would automatically convert the datetimes to UTC (without a UTC timezone)
In [4]: pd.to_datetime(["2015-11-18 15:30:00+05:30", "2015-11-18 16:30:00+06:30"])
Out[4]: DatetimeIndex(['2015-11-18 10:00:00', '2015-11-18 10:00:00'], dtype='datetime64[ns]', freq=None)
New behavior:
.. ipython:: python pd.to_datetime("2015-11-18 15:30:00+05:30") pd.Timestamp("2015-11-18 15:30:00+05:30")
Parsing datetime strings with the same UTC offset will preserve the UTC offset in the tz
.. ipython:: python pd.to_datetime(["2015-11-18 15:30:00+05:30"] * 2)
Parsing datetime strings with different UTC offsets will now create an Index of
datetime.datetime
objects with different UTC offsets
In [59]: idx = pd.to_datetime(["2015-11-18 15:30:00+05:30",
"2015-11-18 16:30:00+06:30"])
In[60]: idx
Out[60]: Index([2015-11-18 15:30:00+05:30, 2015-11-18 16:30:00+06:30], dtype='object')
In[61]: idx[0]
Out[61]: Timestamp('2015-11-18 15:30:00+0530', tz='UTC+05:30')
In[62]: idx[1]
Out[62]: Timestamp('2015-11-18 16:30:00+0630', tz='UTC+06:30')
Passing utc=True
will mimic the previous behavior but will correctly indicate
that the dates have been converted to UTC
.. ipython:: python pd.to_datetime(["2015-11-18 15:30:00+05:30", "2015-11-18 16:30:00+06:30"], utc=True)
Parsing mixed-timezones with :func:`read_csv`
:func:`read_csv` no longer silently converts mixed-timezone columns to UTC (:issue:`24987`).
Previous behavior
>>> import io
>>> content = """\
... a
... 2000-01-01T00:00:00+05:00
... 2000-01-01T00:00:00+06:00"""
>>> df = pd.read_csv(io.StringIO(content), parse_dates=['a'])
>>> df.a
0 1999-12-31 19:00:00
1 1999-12-31 18:00:00
Name: a, dtype: datetime64[ns]
New behavior
In[64]: import io
In[65]: content = """\
...: a
...: 2000-01-01T00:00:00+05:00
...: 2000-01-01T00:00:00+06:00"""
In[66]: df = pd.read_csv(io.StringIO(content), parse_dates=['a'])
In[67]: df.a
Out[67]:
0 2000-01-01 00:00:00+05:00
1 2000-01-01 00:00:00+06:00
Name: a, Length: 2, dtype: object
As can be seen, the dtype
is object; each value in the column is a string.
To convert the strings to an array of datetimes, the date_parser
argument
In [3]: df = pd.read_csv(
...: io.StringIO(content),
...: parse_dates=['a'],
...: date_parser=lambda col: pd.to_datetime(col, utc=True),
...: )
In [4]: df.a
Out[4]:
0 1999-12-31 19:00:00+00:00
1 1999-12-31 18:00:00+00:00
Name: a, dtype: datetime64[ns, UTC]
See :ref:`whatsnew_0240.api.timezone_offset_parsing` for more.
The time values in :class:`Period` and :class:`PeriodIndex` objects are now set
to '23:59:59.999999999' when calling :attr:`Series.dt.end_time`, :attr:`Period.end_time`,
:attr:`PeriodIndex.end_time`, :func:`Period.to_timestamp` with how='end'
,
or :func:`PeriodIndex.to_timestamp` with how='end'
(:issue:`17157`)
Previous behavior:
In [2]: p = pd.Period('2017-01-01', 'D')
In [3]: pi = pd.PeriodIndex([p])
In [4]: pd.Series(pi).dt.end_time[0]
Out[4]: Timestamp(2017-01-01 00:00:00)
In [5]: p.end_time
Out[5]: Timestamp(2017-01-01 23:59:59.999999999)
New behavior:
Calling :attr:`Series.dt.end_time` will now result in a time of '23:59:59.999999999' as is the case with :attr:`Period.end_time`, for example
.. ipython:: python p = pd.Period('2017-01-01', 'D') pi = pd.PeriodIndex([p]) pd.Series(pi).dt.end_time[0] p.end_time
The return type of :meth:`Series.unique` for datetime with timezone values has changed from an :class:`numpy.ndarray` of :class:`Timestamp` objects to a :class:`arrays.DatetimeArray` (:issue:`24024`).
.. ipython:: python ser = pd.Series([pd.Timestamp('2000', tz='UTC'), pd.Timestamp('2000', tz='UTC')])
Previous behavior:
In [3]: ser.unique()
Out[3]: array([Timestamp('2000-01-01 00:00:00+0000', tz='UTC')], dtype=object)
New behavior:
.. ipython:: python ser.unique()
SparseArray
, the array backing SparseSeries
and the columns in a SparseDataFrame
,
is now an extension array (:issue:`21978`, :issue:`19056`, :issue:`22835`).
To conform to this interface and for consistency with the rest of pandas, some API breaking
changes were made:
SparseArray
is no longer a subclass of :class:`numpy.ndarray`. To convert aSparseArray
to a NumPy array, use :func:`numpy.asarray`.SparseArray.dtype
andSparseSeries.dtype
are now instances of :class:`SparseDtype`, rather thannp.dtype
. Access the underlying dtype withSparseDtype.subtype
.numpy.asarray(sparse_array)
now returns a dense array with all the values, not just the non-fill-value values (:issue:`14167`)SparseArray.take
now matches the API of :meth:`pandas.api.extensions.ExtensionArray.take` (:issue:`19506`):- The default value of
allow_fill
has changed fromFalse
toTrue
. - The
out
andmode
parameters are now longer accepted (previously, this raised if they were specified). - Passing a scalar for
indices
is no longer allowed.
- The default value of
- The result of :func:`concat` with a mix of sparse and dense Series is a Series with sparse values, rather than a
SparseSeries
. SparseDataFrame.combine
andDataFrame.combine_first
no longer supports combining a sparse column with a dense column while preserving the sparse subtype. The result will be an object-dtype SparseArray.- Setting :attr:`SparseArray.fill_value` to a fill value with a different dtype is now allowed.
DataFrame[column]
is now a :class:`Series` with sparse values, rather than a :class:`SparseSeries`, when slicing a single column with sparse values (:issue:`23559`).- The result of :meth:`Series.where` is now a
Series
with sparse values, like with other extension arrays (:issue:`24077`)
Some new warnings are issued for operations that require or are likely to materialize a large dense array:
- A :class:`errors.PerformanceWarning` is issued when using fillna with a
method
, as a dense array is constructed to create the filled array. Filling with avalue
is the efficient way to fill a sparse array. - A :class:`errors.PerformanceWarning` is now issued when concatenating sparse Series with differing fill values. The fill value from the first sparse array continues to be used.
In addition to these API breaking changes, many :ref:`Performance Improvements and Bug Fixes have been made <whatsnew_0240.bug_fixes.sparse>`.
Finally, a Series.sparse
accessor was added to provide sparse-specific methods like :meth:`Series.sparse.from_coo`.
.. ipython:: python s = pd.Series([0, 0, 1, 1, 1], dtype='Sparse[int]') s.sparse.density
:meth:`get_dummies` always returns a DataFrame
Previously, when sparse=True
was passed to :func:`get_dummies`, the return value could be either
a :class:`DataFrame` or a :class:`SparseDataFrame`, depending on whether all or a just a subset
of the columns were dummy-encoded. Now, a :class:`DataFrame` is always returned (:issue:`24284`).
Previous behavior
The first :func:`get_dummies` returns a :class:`DataFrame` because the column A
is not dummy encoded. When just ["B", "C"]
are passed to get_dummies
,
then all the columns are dummy-encoded, and a :class:`SparseDataFrame` was returned.
In [2]: df = pd.DataFrame({"A": [1, 2], "B": ['a', 'b'], "C": ['a', 'a']})
In [3]: type(pd.get_dummies(df, sparse=True))
Out[3]: pandas.DataFrame
In [4]: type(pd.get_dummies(df[['B', 'C']], sparse=True))
Out[4]: pandas.core.sparse.frame.SparseDataFrame
.. ipython:: python :suppress: df = pd.DataFrame({"A": [1, 2], "B": ['a', 'b'], "C": ['a', 'a']})
New behavior
Now, the return type is consistently a :class:`DataFrame`.
.. ipython:: python type(pd.get_dummies(df, sparse=True)) type(pd.get_dummies(df[['B', 'C']], sparse=True))
Note
There's no difference in memory usage between a :class:`SparseDataFrame` and a :class:`DataFrame` with sparse values. The memory usage will be the same as in the previous version of pandas.
Bug in :func:`DataFrame.to_dict` raises ValueError
when used with
orient='index'
and a non-unique index instead of losing data (:issue:`22801`)
.. ipython:: python :okexcept: df = pd.DataFrame({'a': [1, 2], 'b': [0.5, 0.75]}, index=['A', 'A']) df df.to_dict(orient='index')
Creating a Tick
object (:class:`Day`, :class:`Hour`, :class:`Minute`,
:class:`Second`, :class:`Milli`, :class:`Micro`, :class:`Nano`) with
normalize=True
is no longer supported. This prevents unexpected behavior
where addition could fail to be monotone or associative. (:issue:`21427`)
Previous behavior:
In [2]: ts = pd.Timestamp('2018-06-11 18:01:14')
In [3]: ts
Out[3]: Timestamp('2018-06-11 18:01:14')
In [4]: tic = pd.offsets.Hour(n=2, normalize=True)
...:
In [5]: tic
Out[5]: <2 * Hours>
In [6]: ts + tic
Out[6]: Timestamp('2018-06-11 00:00:00')
In [7]: ts + tic + tic + tic == ts + (tic + tic + tic)
Out[7]: False
New behavior:
.. ipython:: python ts = pd.Timestamp('2018-06-11 18:01:14') tic = pd.offsets.Hour(n=2) ts + tic + tic + tic == ts + (tic + tic + tic)
Subtraction of a Period
from another Period
will give a DateOffset
.
instead of an integer (:issue:`21314`)
Previous behavior:
In [2]: june = pd.Period('June 2018')
In [3]: april = pd.Period('April 2018')
In [4]: june - april
Out [4]: 2
New behavior:
.. ipython:: python june = pd.Period('June 2018') april = pd.Period('April 2018') june - april
Similarly, subtraction of a Period
from a PeriodIndex
will now return
an Index
of DateOffset
objects instead of an Int64Index
Previous behavior:
In [2]: pi = pd.period_range('June 2018', freq='M', periods=3)
In [3]: pi - pi[0]
Out[3]: Int64Index([0, 1, 2], dtype='int64')
New behavior:
.. ipython:: python pi = pd.period_range('June 2018', freq='M', periods=3) pi - pi[0]
Addition/subtraction of NaN
from :class:`DataFrame`
Adding or subtracting NaN
from a :class:`DataFrame` column with
timedelta64[ns]
dtype will now raise a TypeError
instead of returning
all-NaT
. This is for compatibility with TimedeltaIndex
and
Series
behavior (:issue:`22163`)
.. ipython:: python df = pd.DataFrame([pd.Timedelta(days=1)]) df
Previous behavior:
In [4]: df = pd.DataFrame([pd.Timedelta(days=1)])
In [5]: df - np.nan
Out[5]:
0
0 NaT
New behavior:
In [2]: df - np.nan
...
TypeError: unsupported operand type(s) for -: 'TimedeltaIndex' and 'float'
Previously, the broadcasting behavior of :class:`DataFrame` comparison
operations (==
, !=
, ...) was inconsistent with the behavior of
arithmetic operations (+
, -
, ...). The behavior of the comparison
operations has been changed to match the arithmetic operations in these cases.
(:issue:`22880`)
The affected cases are:
- operating against a 2-dimensional
np.ndarray
with either 1 row or 1 column will now broadcast the same way anp.ndarray
would (:issue:`23000`). - a list or tuple with length matching the number of rows in the :class:`DataFrame` will now raise
ValueError
instead of operating column-by-column (:issue:`22880`. - a list or tuple with length matching the number of columns in the :class:`DataFrame` will now operate row-by-row instead of raising
ValueError
(:issue:`22880`).
.. ipython:: python arr = np.arange(6).reshape(3, 2) df = pd.DataFrame(arr) df
Previous behavior:
In [5]: df == arr[[0], :]
...: # comparison previously broadcast where arithmetic would raise
Out[5]:
0 1
0 True True
1 False False
2 False False
In [6]: df + arr[[0], :]
...
ValueError: Unable to coerce to DataFrame, shape must be (3, 2): given (1, 2)
In [7]: df == (1, 2)
...: # length matches number of columns;
...: # comparison previously raised where arithmetic would broadcast
...
ValueError: Invalid broadcasting comparison [(1, 2)] with block values
In [8]: df + (1, 2)
Out[8]:
0 1
0 1 3
1 3 5
2 5 7
In [9]: df == (1, 2, 3)
...: # length matches number of rows
...: # comparison previously broadcast where arithmetic would raise
Out[9]:
0 1
0 False True
1 True False
2 False False
In [10]: df + (1, 2, 3)
...
ValueError: Unable to coerce to Series, length must be 2: given 3
New behavior:
.. ipython:: python # Comparison operations and arithmetic operations both broadcast. df == arr[[0], :] df + arr[[0], :]
.. ipython:: python # Comparison operations and arithmetic operations both broadcast. df == (1, 2) df + (1, 2)
# Comparison operations and arithmetic operations both raise ValueError.
In [6]: df == (1, 2, 3)
...
ValueError: Unable to coerce to Series, length must be 2: given 3
In [7]: df + (1, 2, 3)
...
ValueError: Unable to coerce to Series, length must be 2: given 3
:class:`DataFrame` arithmetic operations when operating with 2-dimensional
np.ndarray
objects now broadcast in the same way as np.ndarray
broadcast. (:issue:`23000`)
.. ipython:: python arr = np.arange(6).reshape(3, 2) df = pd.DataFrame(arr) df
Previous behavior:
In [5]: df + arr[[0], :] # 1 row, 2 columns
...
ValueError: Unable to coerce to DataFrame, shape must be (3, 2): given (1, 2)
In [6]: df + arr[:, [1]] # 1 column, 3 rows
...
ValueError: Unable to coerce to DataFrame, shape must be (3, 2): given (3, 1)
New behavior:
.. ipython:: python df + arr[[0], :] # 1 row, 2 columns df + arr[:, [1]] # 1 column, 3 rows
Series
and Index
constructors now raise when the
data is incompatible with a passed dtype=
(:issue:`15832`)
Previous behavior:
In [4]: pd.Series([-1], dtype="uint64")
Out [4]:
0 18446744073709551615
dtype: uint64
New behavior:
In [4]: pd.Series([-1], dtype="uint64")
Out [4]:
...
OverflowError: Trying to coerce negative values to unsigned integers
Calling :func:`pandas.concat` on a Categorical
of ints with NA values now
causes them to be processed as objects when concatenating with anything
other than another Categorical
of ints (:issue:`19214`)
.. ipython:: python s = pd.Series([0, 1, np.nan]) c = pd.Series([0, 1, np.nan], dtype="category")
Previous behavior
In [3]: pd.concat([s, c])
Out[3]:
0 0.0
1 1.0
2 NaN
0 0.0
1 1.0
2 NaN
dtype: float64
New behavior
.. ipython:: python pd.concat([s, c])
- For :class:`DatetimeIndex` and :class:`TimedeltaIndex` with non-
None
freq
attribute, addition or subtraction of integer-dtyped array orIndex
will return an object of the same class (:issue:`19959`) - :class:`DateOffset` objects are now immutable. Attempting to alter one of these will now raise
AttributeError
(:issue:`21341`) - :class:`PeriodIndex` subtraction of another
PeriodIndex
will now return an object-dtype :class:`Index` of :class:`DateOffset` objects instead of raising aTypeError
(:issue:`20049`) - :func:`cut` and :func:`qcut` now returns a :class:`DatetimeIndex` or :class:`TimedeltaIndex` bins when the input is datetime or timedelta dtype respectively and
retbins=True
(:issue:`19891`) - :meth:`DatetimeIndex.to_period` and :meth:`Timestamp.to_period` will issue a warning when timezone information will be lost (:issue:`21333`)
- :meth:`PeriodIndex.tz_convert` and :meth:`PeriodIndex.tz_localize` have been removed (:issue:`21781`)
- A newly constructed empty :class:`DataFrame` with integer as the
dtype
will now only be cast tofloat64
ifindex
is specified (:issue:`22858`) - :meth:`Series.str.cat` will now raise if
others
is aset
(:issue:`23009`) - Passing scalar values to :class:`DatetimeIndex` or :class:`TimedeltaIndex` will now raise
TypeError
instead ofValueError
(:issue:`23539`) max_rows
andmax_cols
parameters removed from :class:`HTMLFormatter` since truncation is handled by :class:`DataFrameFormatter` (:issue:`23818`)- :func:`read_csv` will now raise a
ValueError
if a column with missing values is declared as having dtypebool
(:issue:`20591`) - The column order of the resultant :class:`DataFrame` from :meth:`MultiIndex.to_frame` is now guaranteed to match the :attr:`MultiIndex.names` order. (:issue:`22420`)
- Incorrectly passing a :class:`DatetimeIndex` to :meth:`MultiIndex.from_tuples`, rather than a sequence of tuples, now raises a
TypeError
rather than aValueError
(:issue:`24024`) - :func:`pd.offsets.generate_range` argument
time_rule
has been removed; useoffset
instead (:issue:`24157`) - In 0.23.x, pandas would raise a
ValueError
on a merge of a numeric column (e.g.int
dtyped column) and anobject
dtyped column (:issue:`9780`). We have re-enabled the ability to mergeobject
and other dtypes; pandas will still raise on a merge between a numeric and anobject
dtyped column that is composed only of strings (:issue:`21681`) - Accessing a level of a
MultiIndex
with a duplicate name (e.g. in :meth:`~MultiIndex.get_level_values`) now raises aValueError
instead of aKeyError
(:issue:`21678`). - Invalid construction of
IntervalDtype
will now always raise aTypeError
rather than aValueError
if the subdtype is invalid (:issue:`21185`) - Trying to reindex a
DataFrame
with a non uniqueMultiIndex
now raises aValueError
instead of anException
(:issue:`21770`) - :class:`Index` subtraction will attempt to operate element-wise instead of raising
TypeError
(:issue:`19369`) - :class:`pandas.io.formats.style.Styler` supports a
number-format
property when using :meth:`~pandas.io.formats.style.Styler.to_excel` (:issue:`22015`) - :meth:`DataFrame.corr` and :meth:`Series.corr` now raise a
ValueError
along with a helpful error message instead of aKeyError
when supplied with an invalid method (:issue:`22298`) - :meth:`shift` will now always return a copy, instead of the previous behaviour of returning self when shifting by 0 (:issue:`22397`)
- :meth:`DataFrame.set_index` now gives a better (and less frequent) KeyError, raises a
ValueError
for incorrect types, and will not fail on duplicate column names withdrop=True
. (:issue:`22484`) - Slicing a single row of a DataFrame with multiple ExtensionArrays of the same type now preserves the dtype, rather than coercing to object (:issue:`22784`)
- :class:`DateOffset` attribute
_cacheable
and method_should_cache
have been removed (:issue:`23118`) - :meth:`Series.searchsorted`, when supplied a scalar value to search for, now returns a scalar instead of an array (:issue:`23801`).
- :meth:`Categorical.searchsorted`, when supplied a scalar value to search for, now returns a scalar instead of an array (:issue:`23466`).
- :meth:`Categorical.searchsorted` now raises a
KeyError
rather that aValueError
, if a searched for key is not found in its categories (:issue:`23466`). - :meth:`Index.hasnans` and :meth:`Series.hasnans` now always return a python boolean. Previously, a python or a numpy boolean could be returned, depending on circumstances (:issue:`23294`).
- The order of the arguments of :func:`DataFrame.to_html` and :func:`DataFrame.to_string` is rearranged to be consistent with each other. (:issue:`23614`)
- :meth:`CategoricalIndex.reindex` now raises a
ValueError
if the target index is non-unique and not equal to the current index. It previously only raised if the target index was not of a categorical dtype (:issue:`23963`). - :func:`Series.to_list` and :func:`Index.to_list` are now aliases of
Series.tolist
respectivelyIndex.tolist
(:issue:`8826`) - The result of
SparseSeries.unstack
is now a :class:`DataFrame` with sparse values, rather than a :class:`SparseDataFrame` (:issue:`24372`). - :class:`DatetimeIndex` and :class:`TimedeltaIndex` no longer ignore the dtype precision. Passing a non-nanosecond resolution dtype will raise a
ValueError
(:issue:`24753`)
Equality and hashability
pandas now requires that extension dtypes be hashable (i.e. the respective
ExtensionDtype
objects; hashability is not a requirement for the values
of the corresponding ExtensionArray
). The base class implements
a default __eq__
and __hash__
. If you have a parametrized dtype, you should
update the ExtensionDtype._metadata
tuple to match the signature of your
__init__
method. See :class:`pandas.api.extensions.ExtensionDtype` for more (:issue:`22476`).
New and changed methods
- :meth:`~pandas.api.types.ExtensionArray.dropna` has been added (:issue:`21185`)
- :meth:`~pandas.api.types.ExtensionArray.repeat` has been added (:issue:`24349`)
- The
ExtensionArray
constructor,_from_sequence
now take the keyword argcopy=False
(:issue:`21185`) - :meth:`pandas.api.extensions.ExtensionArray.shift` added as part of the basic
ExtensionArray
interface (:issue:`22387`). - :meth:`~pandas.api.types.ExtensionArray.searchsorted` has been added (:issue:`24350`)
- Support for reduction operations such as
sum
,mean
via opt-in base class method override (:issue:`22762`) - :func:`ExtensionArray.isna` is allowed to return an
ExtensionArray
(:issue:`22325`).
Dtype changes
ExtensionDtype
has gained the ability to instantiate from string dtypes, e.g.decimal
would instantiate a registeredDecimalDtype
; furthermore theExtensionDtype
has gained the methodconstruct_array_type
(:issue:`21185`)- Added
ExtensionDtype._is_numeric
for controlling whether an extension dtype is considered numeric (:issue:`22290`). - Added :meth:`pandas.api.types.register_extension_dtype` to register an extension type with pandas (:issue:`22664`)
- Updated the
.type
attribute forPeriodDtype
,DatetimeTZDtype
, andIntervalDtype
to be instances of the dtype (Period
,Timestamp
, andInterval
respectively) (:issue:`22938`)
Operator support
A Series
based on an ExtensionArray
now supports arithmetic and comparison
operators (:issue:`19577`). There are two approaches for providing operator support for an ExtensionArray
:
- Define each of the operators on your
ExtensionArray
subclass. - Use an operator implementation from pandas that depends on operators that are already defined
on the underlying elements (scalars) of the
ExtensionArray
.
See the :ref:`ExtensionArray Operator Support <extending.extension.operator>` documentation section for details on both ways of adding operator support.
Other changes
- A default repr for :class:`pandas.api.extensions.ExtensionArray` is now provided (:issue:`23601`).
- :meth:`ExtensionArray._formatting_values` is deprecated. Use :attr:`ExtensionArray._formatter` instead. (:issue:`23601`)
- An
ExtensionArray
with a boolean dtype now works correctly as a boolean indexer. :meth:`pandas.api.types.is_bool_dtype` now properly considers them boolean (:issue:`22326`)
Bug fixes
- Bug in :meth:`Series.get` for
Series
usingExtensionArray
and integer index (:issue:`21257`) - :meth:`~Series.shift` now dispatches to :meth:`ExtensionArray.shift` (:issue:`22386`)
- :meth:`Series.combine` works correctly with :class:`~pandas.api.extensions.ExtensionArray` inside of :class:`Series` (:issue:`20825`)
- :meth:`Series.combine` with scalar argument now works for any function type (:issue:`21248`)
- :meth:`Series.astype` and :meth:`DataFrame.astype` now dispatch to :meth:`ExtensionArray.astype` (:issue:`21185`).
- Slicing a single row of a
DataFrame
with multiple ExtensionArrays of the same type now preserves the dtype, rather than coercing to object (:issue:`22784`) - Bug when concatenating multiple
Series
with different extension dtypes not casting to object dtype (:issue:`22994`) - Series backed by an
ExtensionArray
now work with :func:`util.hash_pandas_object` (:issue:`23066`) - :meth:`DataFrame.stack` no longer converts to object dtype for DataFrames where each column has the same extension dtype. The output Series will have the same dtype as the columns (:issue:`23077`).
- :meth:`Series.unstack` and :meth:`DataFrame.unstack` no longer convert extension arrays to object-dtype ndarrays. Each column in the output
DataFrame
will now have the same dtype as the input (:issue:`23077`). - Bug when grouping :meth:`Dataframe.groupby` and aggregating on
ExtensionArray
it was not returning the actualExtensionArray
dtype (:issue:`23227`). - Bug in :func:`pandas.merge` when merging on an extension array-backed column (:issue:`23020`).
- :attr:`MultiIndex.labels` has been deprecated and replaced by :attr:`MultiIndex.codes`.
The functionality is unchanged. The new name better reflects the natures of
these codes and makes the
MultiIndex
API more similar to the API for :class:`CategoricalIndex` (:issue:`13443`). As a consequence, other uses of the namelabels
inMultiIndex
have also been deprecated and replaced withcodes
:- You should initialize a
MultiIndex
instance using a parameter namedcodes
rather thanlabels
. MultiIndex.set_labels
has been deprecated in favor of :meth:`MultiIndex.set_codes`.- For method :meth:`MultiIndex.copy`, the
labels
parameter has been deprecated and replaced by acodes
parameter.
- You should initialize a
- :meth:`DataFrame.to_stata`, :meth:`read_stata`, :class:`StataReader` and :class:`StataWriter` have deprecated the
encoding
argument. The encoding of a Stata dta file is determined by the file type and cannot be changed (:issue:`21244`) - :meth:`MultiIndex.to_hierarchical` is deprecated and will be removed in a future version (:issue:`21613`)
- :meth:`Series.ptp` is deprecated. Use
numpy.ptp
instead (:issue:`21614`) - :meth:`Series.compress` is deprecated. Use
Series[condition]
instead (:issue:`18262`) - The signature of :meth:`Series.to_csv` has been uniformed to that of :meth:`DataFrame.to_csv`: the name of the first argument is now
path_or_buf
, the order of subsequent arguments has changed, theheader
argument now defaults toTrue
. (:issue:`19715`) - :meth:`Categorical.from_codes` has deprecated providing float values for the
codes
argument. (:issue:`21767`) - :func:`pandas.read_table` is deprecated. Instead, use :func:`read_csv` passing
sep='\t'
if necessary. This deprecation has been removed in 0.25.0. (:issue:`21948`) - :meth:`Series.str.cat` has deprecated using arbitrary list-likes within list-likes. A list-like container may still contain
many
Series
,Index
or 1-dimensionalnp.ndarray
, or alternatively, only scalar values. (:issue:`21950`) - :meth:`FrozenNDArray.searchsorted` has deprecated the
v
parameter in favor ofvalue
(:issue:`14645`) - :func:`DatetimeIndex.shift` and :func:`PeriodIndex.shift` now accept
periods
argument instead ofn
for consistency with :func:`Index.shift` and :func:`Series.shift`. Usingn
throws a deprecation warning (:issue:`22458`, :issue:`22912`) - The
fastpath
keyword of the different Index constructors is deprecated (:issue:`23110`). - :meth:`Timestamp.tz_localize`, :meth:`DatetimeIndex.tz_localize`, and :meth:`Series.tz_localize` have deprecated the
errors
argument in favor of thenonexistent
argument (:issue:`8917`) - The class
FrozenNDArray
has been deprecated. When unpickling,FrozenNDArray
will be unpickled tonp.ndarray
once this class is removed (:issue:`9031`) - The methods :meth:`DataFrame.update` and :meth:`Panel.update` have deprecated the
raise_conflict=False|True
keyword in favor oferrors='ignore'|'raise'
(:issue:`23585`) - The methods :meth:`Series.str.partition` and :meth:`Series.str.rpartition` have deprecated the
pat
keyword in favor ofsep
(:issue:`22676`) - Deprecated the
nthreads
keyword of :func:`pandas.read_feather` in favor ofuse_threads
to reflect the changes inpyarrow>=0.11.0
. (:issue:`23053`) - :func:`pandas.read_excel` has deprecated accepting
usecols
as an integer. Please pass in a list of ints from 0 tousecols
inclusive instead (:issue:`23527`) - Constructing a :class:`TimedeltaIndex` from data with
datetime64
-dtyped data is deprecated, will raiseTypeError
in a future version (:issue:`23539`) - Constructing a :class:`DatetimeIndex` from data with
timedelta64
-dtyped data is deprecated, will raiseTypeError
in a future version (:issue:`23675`) - The
keep_tz=False
option (the default) of thekeep_tz
keyword of :meth:`DatetimeIndex.to_series` is deprecated (:issue:`17832`). - Timezone converting a tz-aware
datetime.datetime
or :class:`Timestamp` with :class:`Timestamp` and thetz
argument is now deprecated. Instead, use :meth:`Timestamp.tz_convert` (:issue:`23579`) - :func:`pandas.api.types.is_period` is deprecated in favor of
pandas.api.types.is_period_dtype
(:issue:`23917`) - :func:`pandas.api.types.is_datetimetz` is deprecated in favor of
pandas.api.types.is_datetime64tz
(:issue:`23917`) - Creating a :class:`TimedeltaIndex`, :class:`DatetimeIndex`, or :class:`PeriodIndex` by passing range arguments
start
,end
, andperiods
is deprecated in favor of :func:`timedelta_range`, :func:`date_range`, or :func:`period_range` (:issue:`23919`) - Passing a string alias like
'datetime64[ns, UTC]'
as theunit
parameter to :class:`DatetimeTZDtype` is deprecated. Use :class:`DatetimeTZDtype.construct_from_string` instead (:issue:`23990`). - The
skipna
parameter of :meth:`~pandas.api.types.infer_dtype` will switch toTrue
by default in a future version of pandas (:issue:`17066`, :issue:`24050`) - In :meth:`Series.where` with Categorical data, providing an
other
that is not present in the categories is deprecated. Convert the categorical to a different dtype or add theother
to the categories first (:issue:`24077`). - :meth:`Series.clip_lower`, :meth:`Series.clip_upper`, :meth:`DataFrame.clip_lower` and :meth:`DataFrame.clip_upper` are deprecated and will be removed in a future version. Use
Series.clip(lower=threshold)
,Series.clip(upper=threshold)
and the equivalentDataFrame
methods (:issue:`24203`) - :meth:`Series.nonzero` is deprecated and will be removed in a future version (:issue:`18262`)
- Passing an integer to :meth:`Series.fillna` and :meth:`DataFrame.fillna` with
timedelta64[ns]
dtypes is deprecated, will raiseTypeError
in a future version. Useobj.fillna(pd.Timedelta(...))
instead (:issue:`24694`) Series.cat.categorical
,Series.cat.name
andSeries.cat.index
have been deprecated. Use the attributes onSeries.cat
orSeries
directly. (:issue:`24751`).- Passing a dtype without a precision like
np.dtype('datetime64')
ortimedelta64
to :class:`Index`, :class:`DatetimeIndex` and :class:`TimedeltaIndex` is now deprecated. Use the nanosecond-precision dtype instead (:issue:`24753`).
In the past, users could—in some cases—add or subtract integers or integer-dtype arrays from :class:`Timestamp`, :class:`DatetimeIndex` and :class:`TimedeltaIndex`.
This usage is now deprecated. Instead add or subtract integer multiples of
the object's freq
attribute (:issue:`21939`, :issue:`23878`).
Previous behavior:
In [5]: ts = pd.Timestamp('1994-05-06 12:15:16', freq=pd.offsets.Hour())
In [6]: ts + 2
Out[6]: Timestamp('1994-05-06 14:15:16', freq='H')
In [7]: tdi = pd.timedelta_range('1D', periods=2)
In [8]: tdi - np.array([2, 1])
Out[8]: TimedeltaIndex(['-1 days', '1 days'], dtype='timedelta64[ns]', freq=None)
In [9]: dti = pd.date_range('2001-01-01', periods=2, freq='7D')
In [10]: dti + pd.Index([1, 2])
Out[10]: DatetimeIndex(['2001-01-08', '2001-01-22'], dtype='datetime64[ns]', freq=None)
New behavior:
In [108]: ts = pd.Timestamp('1994-05-06 12:15:16', freq=pd.offsets.Hour())
In[109]: ts + 2 * ts.freq
Out[109]: Timestamp('1994-05-06 14:15:16', freq='H')
In [110]: tdi = pd.timedelta_range('1D', periods=2)
In [111]: tdi - np.array([2 * tdi.freq, 1 * tdi.freq])
Out[111]: TimedeltaIndex(['-1 days', '1 days'], dtype='timedelta64[ns]', freq=None)
In [112]: dti = pd.date_range('2001-01-01', periods=2, freq='7D')
In [113]: dti + pd.Index([1 * dti.freq, 2 * dti.freq])
Out[113]: DatetimeIndex(['2001-01-08', '2001-01-22'], dtype='datetime64[ns]', freq=None)
The behavior of :class:`DatetimeIndex` when passed integer data and a timezone is changing in a future version of pandas. Previously, these were interpreted as wall times in the desired timezone. In the future, these will be interpreted as wall times in UTC, which are then converted to the desired timezone (:issue:`24559`).
The default behavior remains the same, but issues a warning:
In [3]: pd.DatetimeIndex([946684800000000000], tz="US/Central")
/bin/ipython:1: FutureWarning:
Passing integer-dtype data and a timezone to DatetimeIndex. Integer values
will be interpreted differently in a future version of pandas. Previously,
these were viewed as datetime64[ns] values representing the wall time
*in the specified timezone*. In the future, these will be viewed as
datetime64[ns] values representing the wall time *in UTC*. This is similar
to a nanosecond-precision UNIX epoch. To accept the future behavior, use
pd.to_datetime(integer_data, utc=True).tz_convert(tz)
To keep the previous behavior, use
pd.to_datetime(integer_data).tz_localize(tz)
#!/bin/python3
Out[3]: DatetimeIndex(['2000-01-01 00:00:00-06:00'], dtype='datetime64[ns, US/Central]', freq=None)
As the warning message explains, opt in to the future behavior by specifying that the integer values are UTC, and then converting to the final timezone:
.. ipython:: python pd.to_datetime([946684800000000000], utc=True).tz_convert('US/Central')
The old behavior can be retained with by localizing directly to the final timezone:
.. ipython:: python pd.to_datetime([946684800000000000]).tz_localize('US/Central')
The conversion from a :class:`Series` or :class:`Index` with timezone-aware datetime data will change to preserve timezones by default (:issue:`23569`).
NumPy doesn't have a dedicated dtype for timezone-aware datetimes. In the past, converting a :class:`Series` or :class:`DatetimeIndex` with timezone-aware datatimes would convert to a NumPy array by
- converting the tz-aware data to UTC
- dropping the timezone-info
- returning a :class:`numpy.ndarray` with
datetime64[ns]
dtype
Future versions of pandas will preserve the timezone information by returning an object-dtype NumPy array where each value is a :class:`Timestamp` with the correct timezone attached
.. ipython:: python ser = pd.Series(pd.date_range('2000', periods=2, tz="CET")) ser
The default behavior remains the same, but issues a warning
In [8]: np.asarray(ser)
/bin/ipython:1: FutureWarning: Converting timezone-aware DatetimeArray to timezone-naive
ndarray with 'datetime64[ns]' dtype. In the future, this will return an ndarray
with 'object' dtype where each element is a 'pandas.Timestamp' with the correct 'tz'.
To accept the future behavior, pass 'dtype=object'.
To keep the old behavior, pass 'dtype="datetime64[ns]"'.
#!/bin/python3
Out[8]:
array(['1999-12-31T23:00:00.000000000', '2000-01-01T23:00:00.000000000'],
dtype='datetime64[ns]')
The previous or future behavior can be obtained, without any warnings, by specifying
the dtype
Previous behavior
.. ipython:: python np.asarray(ser, dtype='datetime64[ns]')
Future behavior
.. ipython:: python # New behavior np.asarray(ser, dtype=object)
Or by using :meth:`Series.to_numpy`
.. ipython:: python ser.to_numpy() ser.to_numpy(dtype="datetime64[ns]")
All the above applies to a :class:`DatetimeIndex` with tz-aware values as well.
- The
LongPanel
andWidePanel
classes have been removed (:issue:`10892`) - :meth:`Series.repeat` has renamed the
reps
argument torepeats
(:issue:`14645`) - Several private functions were removed from the (non-public) module
pandas.core.common
(:issue:`22001`) - Removal of the previously deprecated module
pandas.core.datetools
(:issue:`14105`, :issue:`14094`) - Strings passed into :meth:`DataFrame.groupby` that refer to both column and index levels will raise a
ValueError
(:issue:`14432`) - :meth:`Index.repeat` and :meth:`MultiIndex.repeat` have renamed the
n
argument torepeats
(:issue:`14645`) - The
Series
constructor and.astype
method will now raise aValueError
if timestamp dtypes are passed in without a unit (e.g.np.datetime64
) for thedtype
parameter (:issue:`15987`) - Removal of the previously deprecated
as_indexer
keyword completely fromstr.match()
(:issue:`22356`, :issue:`6581`) - The modules
pandas.types
,pandas.computation
, andpandas.util.decorators
have been removed (:issue:`16157`, :issue:`16250`) - Removed the
pandas.formats.style
shim for :class:`pandas.io.formats.style.Styler` (:issue:`16059`) pandas.pnow
,pandas.match
,pandas.groupby
,pd.get_store
,pd.Expr
, andpd.Term
have been removed (:issue:`15538`, :issue:`15940`)- :meth:`Categorical.searchsorted` and :meth:`Series.searchsorted` have renamed the
v
argument tovalue
(:issue:`14645`) pandas.parser
,pandas.lib
, andpandas.tslib
have been removed (:issue:`15537`)- :meth:`Index.searchsorted` have renamed the
key
argument tovalue
(:issue:`14645`) DataFrame.consolidate
andSeries.consolidate
have been removed (:issue:`15501`)- Removal of the previously deprecated module
pandas.json
(:issue:`19944`) - The module
pandas.tools
has been removed (:issue:`15358`, :issue:`16005`) - :meth:`SparseArray.get_values` and :meth:`SparseArray.to_dense` have dropped the
fill
parameter (:issue:`14686`) DataFrame.sortlevel
andSeries.sortlevel
have been removed (:issue:`15099`)- :meth:`SparseSeries.to_dense` has dropped the
sparse_only
parameter (:issue:`14686`) - :meth:`DataFrame.astype` and :meth:`Series.astype` have renamed the
raise_on_error
argument toerrors
(:issue:`14967`) is_sequence
,is_any_int_dtype
, andis_floating_dtype
have been removed frompandas.api.types
(:issue:`16163`, :issue:`16189`)
- Slicing Series and DataFrames with an monotonically increasing :class:`CategoricalIndex`
is now very fast and has speed comparable to slicing with an
Int64Index
. The speed increase is both when indexing by label (using .loc) and position(.iloc) (:issue:`20395`) Slicing a monotonically increasing :class:`CategoricalIndex` itself (i.e.ci[1000:2000]
) shows similar speed improvements as above (:issue:`21659`) - Improved performance of :meth:`CategoricalIndex.equals` when comparing to another :class:`CategoricalIndex` (:issue:`24023`)
- Improved performance of :func:`Series.describe` in case of numeric dtpyes (:issue:`21274`)
- Improved performance of :func:`.GroupBy.rank` when dealing with tied rankings (:issue:`21237`)
- Improved performance of :func:`DataFrame.set_index` with columns consisting of :class:`Period` objects (:issue:`21582`, :issue:`21606`)
- Improved performance of :meth:`Series.at` and :meth:`Index.get_value` for Extension Arrays values (e.g. :class:`Categorical`) (:issue:`24204`)
- Improved performance of membership checks in :class:`Categorical` and :class:`CategoricalIndex`
(i.e.
x in cat
-style checks are much faster). :meth:`CategoricalIndex.contains` is likewise much faster (:issue:`21369`, :issue:`21508`) - Improved performance of :meth:`HDFStore.groups` (and dependent functions like
:meth:`HDFStore.keys`. (i.e.
x in store
checks are much faster) (:issue:`21372`) - Improved the performance of :func:`pandas.get_dummies` with
sparse=True
(:issue:`21997`) - Improved performance of :func:`IndexEngine.get_indexer_non_unique` for sorted, non-unique indexes (:issue:`9466`)
- Improved performance of :func:`PeriodIndex.unique` (:issue:`23083`)
- Improved performance of :func:`concat` for
Series
objects (:issue:`23404`) - Improved performance of :meth:`DatetimeIndex.normalize` and :meth:`Timestamp.normalize` for timezone naive or UTC datetimes (:issue:`23634`)
- Improved performance of :meth:`DatetimeIndex.tz_localize` and various
DatetimeIndex
attributes with dateutil UTC timezone (:issue:`23772`) - Fixed a performance regression on Windows with Python 3.7 of :func:`read_csv` (:issue:`23516`)
- Improved performance of :class:`Categorical` constructor for
Series
objects (:issue:`23814`) - Improved performance of :meth:`~DataFrame.where` for Categorical data (:issue:`24077`)
- Improved performance of iterating over a :class:`Series`. Using :meth:`DataFrame.itertuples` now creates iterators without internally allocating lists of all elements (:issue:`20783`)
- Improved performance of :class:`Period` constructor, additionally benefitting
PeriodArray
andPeriodIndex
creation (:issue:`24084`, :issue:`24118`) - Improved performance of tz-aware :class:`DatetimeArray` binary operations (:issue:`24491`)
- Bug in :meth:`Categorical.from_codes` where
NaN
values incodes
were silently converted to0
(:issue:`21767`). In the future this will raise aValueError
. Also changes the behavior of.from_codes([1.1, 2.0])
. - Bug in :meth:`Categorical.sort_values` where
NaN
values were always positioned in front regardless ofna_position
value. (:issue:`22556`). - Bug when indexing with a boolean-valued
Categorical
. Now a boolean-valuedCategorical
is treated as a boolean mask (:issue:`22665`) - Constructing a :class:`CategoricalIndex` with empty values and boolean categories was raising a
ValueError
after a change to dtype coercion (:issue:`22702`). - Bug in :meth:`Categorical.take` with a user-provided
fill_value
not encoding thefill_value
, which could result in aValueError
, incorrect results, or a segmentation fault (:issue:`23296`). - In :meth:`Series.unstack`, specifying a
fill_value
not present in the categories now raises aTypeError
rather than ignoring thefill_value
(:issue:`23284`) - Bug when resampling :meth:`DataFrame.resample` and aggregating on categorical data, the categorical dtype was getting lost. (:issue:`23227`)
- Bug in many methods of the
.str
-accessor, which always failed on calling theCategoricalIndex.str
constructor (:issue:`23555`, :issue:`23556`) - Bug in :meth:`Series.where` losing the categorical dtype for categorical data (:issue:`24077`)
- Bug in :meth:`Categorical.apply` where
NaN
values could be handled unpredictably. They now remain unchanged (:issue:`24241`) - Bug in :class:`Categorical` comparison methods incorrectly raising
ValueError
when operating against a :class:`DataFrame` (:issue:`24630`) - Bug in :meth:`Categorical.set_categories` where setting fewer new categories with
rename=True
caused a segmentation fault (:issue:`24675`)
- Fixed bug where two :class:`DateOffset` objects with different
normalize
attributes could evaluate as equal (:issue:`21404`) - Fixed bug where :meth:`Timestamp.resolution` incorrectly returned 1-microsecond
timedelta
instead of 1-nanosecond :class:`Timedelta` (:issue:`21336`, :issue:`21365`) - Bug in :func:`to_datetime` that did not consistently return an :class:`Index` when
box=True
was specified (:issue:`21864`) - Bug in :class:`DatetimeIndex` comparisons where string comparisons incorrectly raises
TypeError
(:issue:`22074`) - Bug in :class:`DatetimeIndex` comparisons when comparing against
timedelta64[ns]
dtyped arrays; in some casesTypeError
was incorrectly raised, in others it incorrectly failed to raise (:issue:`22074`) - Bug in :class:`DatetimeIndex` comparisons when comparing against object-dtyped arrays (:issue:`22074`)
- Bug in :class:`DataFrame` with
datetime64[ns]
dtype addition and subtraction withTimedelta
-like objects (:issue:`22005`, :issue:`22163`) - Bug in :class:`DataFrame` with
datetime64[ns]
dtype addition and subtraction withDateOffset
objects returning anobject
dtype instead ofdatetime64[ns]
dtype (:issue:`21610`, :issue:`22163`) - Bug in :class:`DataFrame` with
datetime64[ns]
dtype comparing againstNaT
incorrectly (:issue:`22242`, :issue:`22163`) - Bug in :class:`DataFrame` with
datetime64[ns]
dtype subtractingTimestamp
-like object incorrectly returneddatetime64[ns]
dtype instead oftimedelta64[ns]
dtype (:issue:`8554`, :issue:`22163`) - Bug in :class:`DataFrame` with
datetime64[ns]
dtype subtractingnp.datetime64
object with non-nanosecond unit failing to convert to nanoseconds (:issue:`18874`, :issue:`22163`) - Bug in :class:`DataFrame` comparisons against
Timestamp
-like objects failing to raiseTypeError
for inequality checks with mismatched types (:issue:`8932`, :issue:`22163`) - Bug in :class:`DataFrame` with mixed dtypes including
datetime64[ns]
incorrectly raisingTypeError
on equality comparisons (:issue:`13128`, :issue:`22163`) - Bug in :attr:`DataFrame.values` returning a :class:`DatetimeIndex` for a single-column
DataFrame
with tz-aware datetime values. Now a 2-D :class:`numpy.ndarray` of :class:`Timestamp` objects is returned (:issue:`24024`) - Bug in :meth:`DataFrame.eq` comparison against
NaT
incorrectly returningTrue
orNaN
(:issue:`15697`, :issue:`22163`) - Bug in :class:`DatetimeIndex` subtraction that incorrectly failed to raise
OverflowError
(:issue:`22492`, :issue:`22508`) - Bug in :class:`DatetimeIndex` incorrectly allowing indexing with
Timedelta
object (:issue:`20464`) - Bug in :class:`DatetimeIndex` where frequency was being set if original frequency was
None
(:issue:`22150`) - Bug in rounding methods of :class:`DatetimeIndex` (:meth:`~DatetimeIndex.round`, :meth:`~DatetimeIndex.ceil`, :meth:`~DatetimeIndex.floor`) and :class:`Timestamp` (:meth:`~Timestamp.round`, :meth:`~Timestamp.ceil`, :meth:`~Timestamp.floor`) could give rise to loss of precision (:issue:`22591`)
- Bug in :func:`to_datetime` with an :class:`Index` argument that would drop the
name
from the result (:issue:`21697`) - Bug in :class:`PeriodIndex` where adding or subtracting a :class:`timedelta` or :class:`Tick` object produced incorrect results (:issue:`22988`)
- Bug in the :class:`Series` repr with period-dtype data missing a space before the data (:issue:`23601`)
- Bug in :func:`date_range` when decrementing a start date to a past end date by a negative frequency (:issue:`23270`)
- Bug in :meth:`Series.min` which would return
NaN
instead ofNaT
when called on a series ofNaT
(:issue:`23282`) - Bug in :meth:`Series.combine_first` not properly aligning categoricals, so that missing values in
self
where not filled by valid values fromother
(:issue:`24147`) - Bug in :func:`DataFrame.combine` with datetimelike values raising a TypeError (:issue:`23079`)
- Bug in :func:`date_range` with frequency of
Day
or higher where dates sufficiently far in the future could wrap around to the past instead of raisingOutOfBoundsDatetime
(:issue:`14187`) - Bug in :func:`period_range` ignoring the frequency of
start
andend
when those are provided as :class:`Period` objects (:issue:`20535`). - Bug in :class:`PeriodIndex` with attribute
freq.n
greater than 1 where adding a :class:`DateOffset` object would return incorrect results (:issue:`23215`) - Bug in :class:`Series` that interpreted string indices as lists of characters when setting datetimelike values (:issue:`23451`)
- Bug in :class:`DataFrame` when creating a new column from an ndarray of :class:`Timestamp` objects with timezones creating an object-dtype column, rather than datetime with timezone (:issue:`23932`)
- Bug in :class:`Timestamp` constructor which would drop the frequency of an input :class:`Timestamp` (:issue:`22311`)
- Bug in :class:`DatetimeIndex` where calling
np.array(dtindex, dtype=object)
would incorrectly return an array oflong
objects (:issue:`23524`) - Bug in :class:`Index` where passing a timezone-aware :class:`DatetimeIndex` and
dtype=object
would incorrectly raise aValueError
(:issue:`23524`) - Bug in :class:`Index` where calling
np.array(dtindex, dtype=object)
on a timezone-naive :class:`DatetimeIndex` would return an array ofdatetime
objects instead of :class:`Timestamp` objects, potentially losing nanosecond portions of the timestamps (:issue:`23524`) - Bug in :class:`Categorical.__setitem__` not allowing setting with another
Categorical
when both are unordered and have the same categories, but in a different order (:issue:`24142`) - Bug in :func:`date_range` where using dates with millisecond resolution or higher could return incorrect values or the wrong number of values in the index (:issue:`24110`)
- Bug in :class:`DatetimeIndex` where constructing a :class:`DatetimeIndex` from a :class:`Categorical` or :class:`CategoricalIndex` would incorrectly drop timezone information (:issue:`18664`)
- Bug in :class:`DatetimeIndex` and :class:`TimedeltaIndex` where indexing with
Ellipsis
would incorrectly lose the index'sfreq
attribute (:issue:`21282`) - Clarified error message produced when passing an incorrect
freq
argument to :class:`DatetimeIndex` withNaT
as the first entry in the passed data (:issue:`11587`) - Bug in :func:`to_datetime` where
box
andutc
arguments were ignored when passing a :class:`DataFrame` ordict
of unit mappings (:issue:`23760`) - Bug in :attr:`Series.dt` where the cache would not update properly after an in-place operation (:issue:`24408`)
- Bug in :class:`PeriodIndex` where comparisons against an array-like object with length 1 failed to raise
ValueError
(:issue:`23078`) - Bug in :meth:`DatetimeIndex.astype`, :meth:`PeriodIndex.astype` and :meth:`TimedeltaIndex.astype` ignoring the sign of the
dtype
for unsigned integer dtypes (:issue:`24405`). - Fixed bug in :meth:`Series.max` with
datetime64[ns]
-dtype failing to returnNaT
when nulls are present andskipna=False
is passed (:issue:`24265`) - Bug in :func:`to_datetime` where arrays of
datetime
objects containing both timezone-aware and timezone-naivedatetimes
would fail to raiseValueError
(:issue:`24569`) - Bug in :func:`to_datetime` with invalid datetime format doesn't coerce input to
NaT
even iferrors='coerce'
(:issue:`24763`)
- Bug in :class:`DataFrame` with
timedelta64[ns]
dtype division byTimedelta
-like scalar incorrectly returningtimedelta64[ns]
dtype instead offloat64
dtype (:issue:`20088`, :issue:`22163`) - Bug in adding a :class:`Index` with object dtype to a :class:`Series` with
timedelta64[ns]
dtype incorrectly raising (:issue:`22390`) - Bug in multiplying a :class:`Series` with numeric dtype against a
timedelta
object (:issue:`22390`) - Bug in :class:`Series` with numeric dtype when adding or subtracting an array or
Series
withtimedelta64
dtype (:issue:`22390`) - Bug in :class:`Index` with numeric dtype when multiplying or dividing an array with dtype
timedelta64
(:issue:`22390`) - Bug in :class:`TimedeltaIndex` incorrectly allowing indexing with
Timestamp
object (:issue:`20464`) - Fixed bug where subtracting :class:`Timedelta` from an object-dtyped array would raise
TypeError
(:issue:`21980`) - Fixed bug in adding a :class:`DataFrame` with all-
timedelta64[ns]
dtypes to a :class:`DataFrame` with all-integer dtypes returning incorrect results instead of raisingTypeError
(:issue:`22696`) - Bug in :class:`TimedeltaIndex` where adding a timezone-aware datetime scalar incorrectly returned a timezone-naive :class:`DatetimeIndex` (:issue:`23215`)
- Bug in :class:`TimedeltaIndex` where adding
np.timedelta64('NaT')
incorrectly returned an all-NaT
:class:`DatetimeIndex` instead of an all-NaT
:class:`TimedeltaIndex` (:issue:`23215`) - Bug in :class:`Timedelta` and :func:`to_timedelta` have inconsistencies in supported unit string (:issue:`21762`)
- Bug in :class:`TimedeltaIndex` division where dividing by another :class:`TimedeltaIndex` raised
TypeError
instead of returning a :class:`Float64Index` (:issue:`23829`, :issue:`22631`) - Bug in :class:`TimedeltaIndex` comparison operations where comparing against non-
Timedelta
-like objects would raiseTypeError
instead of returning all-False
for__eq__
and all-True
for__ne__
(:issue:`24056`) - Bug in :class:`Timedelta` comparisons when comparing with a
Tick
object incorrectly raisingTypeError
(:issue:`24710`)
- Bug in :meth:`Index.shift` where an
AssertionError
would raise when shifting across DST (:issue:`8616`) - Bug in :class:`Timestamp` constructor where passing an invalid timezone offset designator (
Z
) would not raise aValueError
(:issue:`8910`) - Bug in :meth:`Timestamp.replace` where replacing at a DST boundary would retain an incorrect offset (:issue:`7825`)
- Bug in :meth:`Series.replace` with
datetime64[ns, tz]
data when replacingNaT
(:issue:`11792`) - Bug in :class:`Timestamp` when passing different string date formats with a timezone offset would produce different timezone offsets (:issue:`12064`)
- Bug when comparing a tz-naive :class:`Timestamp` to a tz-aware :class:`DatetimeIndex` which would coerce the :class:`DatetimeIndex` to tz-naive (:issue:`12601`)
- Bug in :meth:`Series.truncate` with a tz-aware :class:`DatetimeIndex` which would cause a core dump (:issue:`9243`)
- Bug in :class:`Series` constructor which would coerce tz-aware and tz-naive :class:`Timestamp` to tz-aware (:issue:`13051`)
- Bug in :class:`Index` with
datetime64[ns, tz]
dtype that did not localize integer data correctly (:issue:`20964`) - Bug in :class:`DatetimeIndex` where constructing with an integer and tz would not localize correctly (:issue:`12619`)
- Fixed bug where :meth:`DataFrame.describe` and :meth:`Series.describe` on tz-aware datetimes did not show
first
andlast
result (:issue:`21328`) - Bug in :class:`DatetimeIndex` comparisons failing to raise
TypeError
when comparing timezone-awareDatetimeIndex
againstnp.datetime64
(:issue:`22074`) - Bug in
DataFrame
assignment with a timezone-aware scalar (:issue:`19843`) - Bug in :func:`DataFrame.asof` that raised a
TypeError
when attempting to compare tz-naive and tz-aware timestamps (:issue:`21194`) - Bug when constructing a :class:`DatetimeIndex` with :class:`Timestamp` constructed with the
replace
method across DST (:issue:`18785`) - Bug when setting a new value with :meth:`DataFrame.loc` with a :class:`DatetimeIndex` with a DST transition (:issue:`18308`, :issue:`20724`)
- Bug in :meth:`Index.unique` that did not re-localize tz-aware dates correctly (:issue:`21737`)
- Bug when indexing a :class:`Series` with a DST transition (:issue:`21846`)
- Bug in :meth:`DataFrame.resample` and :meth:`Series.resample` where an
AmbiguousTimeError
orNonExistentTimeError
would raise if a timezone aware timeseries ended on a DST transition (:issue:`19375`, :issue:`10117`) - Bug in :meth:`DataFrame.drop` and :meth:`Series.drop` when specifying a tz-aware Timestamp key to drop from a :class:`DatetimeIndex` with a DST transition (:issue:`21761`)
- Bug in :class:`DatetimeIndex` constructor where
NaT
anddateutil.tz.tzlocal
would raise anOutOfBoundsDatetime
error (:issue:`23807`) - Bug in :meth:`DatetimeIndex.tz_localize` and :meth:`Timestamp.tz_localize` with
dateutil.tz.tzlocal
near a DST transition that would return an incorrectly localized datetime (:issue:`23807`) - Bug in :class:`Timestamp` constructor where a
dateutil.tz.tzutc
timezone passed with adatetime.datetime
argument would be converted to apytz.UTC
timezone (:issue:`23807`) - Bug in :func:`to_datetime` where
utc=True
was not respected when specifying aunit
anderrors='ignore'
(:issue:`23758`) - Bug in :func:`to_datetime` where
utc=True
was not respected when passing a :class:`Timestamp` (:issue:`24415`) - Bug in :meth:`DataFrame.any` returns wrong value when
axis=1
and the data is of datetimelike type (:issue:`23070`) - Bug in :meth:`DatetimeIndex.to_period` where a timezone aware index was converted to UTC first before creating :class:`PeriodIndex` (:issue:`22905`)
- Bug in :meth:`DataFrame.tz_localize`, :meth:`DataFrame.tz_convert`, :meth:`Series.tz_localize`, and :meth:`Series.tz_convert` where
copy=False
would mutate the original argument inplace (:issue:`6326`) - Bug in :meth:`DataFrame.max` and :meth:`DataFrame.min` with
axis=1
where a :class:`Series` withNaN
would be returned when all columns contained the same timezone (:issue:`10390`)
- Bug in :class:`FY5253` where date offsets could incorrectly raise an
AssertionError
in arithmetic operations (:issue:`14774`) - Bug in :class:`DateOffset` where keyword arguments
week
andmilliseconds
were accepted and ignored. Passing these will now raiseValueError
(:issue:`19398`) - Bug in adding :class:`DateOffset` with :class:`DataFrame` or :class:`PeriodIndex` incorrectly raising
TypeError
(:issue:`23215`) - Bug in comparing :class:`DateOffset` objects with non-DateOffset objects, particularly strings, raising
ValueError
instead of returningFalse
for equality checks andTrue
for not-equal checks (:issue:`23524`)
- Bug in :class:`Series`
__rmatmul__
doesn't support matrix vector multiplication (:issue:`21530`) - Bug in :func:`factorize` fails with read-only array (:issue:`12813`)
- Fixed bug in :func:`unique` handled signed zeros inconsistently: for some inputs 0.0 and -0.0 were treated as equal and for some inputs as different. Now they are treated as equal for all inputs (:issue:`21866`)
- Bug in :meth:`DataFrame.agg`, :meth:`DataFrame.transform` and :meth:`DataFrame.apply` where,
when supplied with a list of functions and
axis=1
(e.g.df.apply(['sum', 'mean'], axis=1)
), aTypeError
was wrongly raised. For all three methods such calculation are now done correctly. (:issue:`16679`). - Bug in :class:`Series` comparison against datetime-like scalars and arrays (:issue:`22074`)
- Bug in :class:`DataFrame` multiplication between boolean dtype and integer returning
object
dtype instead of integer dtype (:issue:`22047`, :issue:`22163`) - Bug in :meth:`DataFrame.apply` where, when supplied with a string argument and additional positional or keyword arguments (e.g.
df.apply('sum', min_count=1)
), aTypeError
was wrongly raised (:issue:`22376`) - Bug in :meth:`DataFrame.astype` to extension dtype may raise
AttributeError
(:issue:`22578`) - Bug in :class:`DataFrame` with
timedelta64[ns]
dtype arithmetic operations withndarray
with integer dtype incorrectly treating the narray astimedelta64[ns]
dtype (:issue:`23114`) - Bug in :meth:`Series.rpow` with object dtype
NaN
for1 ** NA
instead of1
(:issue:`22922`). - :meth:`Series.agg` can now handle numpy NaN-aware methods like :func:`numpy.nansum` (:issue:`19629`)
- Bug in :meth:`Series.rank` and :meth:`DataFrame.rank` when
pct=True
and more than 224 rows are present resulted in percentages greater than 1.0 (:issue:`18271`) - Calls such as :meth:`DataFrame.round` with a non-unique :meth:`CategoricalIndex` now return expected data. Previously, data would be improperly duplicated (:issue:`21809`).
- Added
log10
,floor
andceil
to the list of supported functions in :meth:`DataFrame.eval` (:issue:`24139`, :issue:`24353`) - Logical operations
&, |, ^
between :class:`Series` and :class:`Index` will no longer raiseValueError
(:issue:`22092`) - Checking PEP 3141 numbers in :func:`~pandas.api.types.is_scalar` function returns
True
(:issue:`22903`) - Reduction methods like :meth:`Series.sum` now accept the default value of
keepdims=False
when called from a NumPy ufunc, rather than raising aTypeError
. Full support forkeepdims
has not been implemented (:issue:`24356`).
- Bug in :meth:`DataFrame.combine_first` in which column types were unexpectedly converted to float (:issue:`20699`)
- Bug in :meth:`DataFrame.clip` in which column types are not preserved and casted to float (:issue:`24162`)
- Bug in :meth:`DataFrame.clip` when order of columns of dataframes doesn't match, result observed is wrong in numeric values (:issue:`20911`)
- Bug in :meth:`DataFrame.astype` where converting to an extension dtype when duplicate column names are present causes a
RecursionError
(:issue:`24704`)
- Bug in :meth:`Index.str.partition` was not nan-safe (:issue:`23558`).
- Bug in :meth:`Index.str.split` was not nan-safe (:issue:`23677`).
- Bug :func:`Series.str.contains` not respecting the
na
argument for aCategorical
dtypeSeries
(:issue:`22158`) - Bug in :meth:`Index.str.cat` when the result contained only
NaN
(:issue:`24044`)
- Bug in the :class:`IntervalIndex` constructor where the
closed
parameter did not always override the inferredclosed
(:issue:`19370`) - Bug in the
IntervalIndex
repr where a trailing comma was missing after the list of intervals (:issue:`20611`) - Bug in :class:`Interval` where scalar arithmetic operations did not retain the
closed
value (:issue:`22313`) - Bug in :class:`IntervalIndex` where indexing with datetime-like values raised a
KeyError
(:issue:`20636`) - Bug in
IntervalTree
where data containingNaN
triggered a warning and resulted in incorrect indexing queries with :class:`IntervalIndex` (:issue:`23352`)
- Bug in :meth:`DataFrame.ne` fails if columns contain column name "dtype" (:issue:`22383`)
- The traceback from a
KeyError
when asking.loc
for a single missing label is now shorter and more clear (:issue:`21557`) - :class:`PeriodIndex` now emits a
KeyError
when a malformed string is looked up, which is consistent with the behavior of :class:`DatetimeIndex` (:issue:`22803`) - When
.ix
is asked for a missing integer label in a :class:`MultiIndex` with a first level of integer type, it now raises aKeyError
, consistently with the case of a flat :class:`Int64Index`, rather than falling back to positional indexing (:issue:`21593`) - Bug in :meth:`Index.reindex` when reindexing a tz-naive and tz-aware :class:`DatetimeIndex` (:issue:`8306`)
- Bug in :meth:`Series.reindex` when reindexing an empty series with a
datetime64[ns, tz]
dtype (:issue:`20869`) - Bug in :class:`DataFrame` when setting values with
.loc
and a timezone aware :class:`DatetimeIndex` (:issue:`11365`) DataFrame.__getitem__
now accepts dictionaries and dictionary keys as list-likes of labels, consistently withSeries.__getitem__
(:issue:`21294`)- Fixed
DataFrame[np.nan]
when columns are non-unique (:issue:`21428`) - Bug when indexing :class:`DatetimeIndex` with nanosecond resolution dates and timezones (:issue:`11679`)
- Bug where indexing with a Numpy array containing negative values would mutate the indexer (:issue:`21867`)
- Bug where mixed indexes wouldn't allow integers for
.at
(:issue:`19860`) Float64Index.get_loc
now raisesKeyError
when boolean key passed. (:issue:`19087`)- Bug in :meth:`DataFrame.loc` when indexing with an :class:`IntervalIndex` (:issue:`19977`)
- :class:`Index` no longer mangles
None
,NaN
andNaT
, i.e. they are treated as three different keys. However, for numeric Index all three are still coerced to aNaN
(:issue:`22332`) - Bug in
scalar in Index
if scalar is a float while theIndex
is of integer dtype (:issue:`22085`) - Bug in :func:`MultiIndex.set_levels` when levels value is not subscriptable (:issue:`23273`)
- Bug where setting a timedelta column by
Index
causes it to be casted to double, and therefore lose precision (:issue:`23511`) - Bug in :func:`Index.union` and :func:`Index.intersection` where name of the
Index
of the result was not computed correctly for certain cases (:issue:`9943`, :issue:`9862`) - Bug in :class:`Index` slicing with boolean :class:`Index` may raise
TypeError
(:issue:`22533`) - Bug in
PeriodArray.__setitem__
when accepting slice and list-like value (:issue:`23978`) - Bug in :class:`DatetimeIndex`, :class:`TimedeltaIndex` where indexing with
Ellipsis
would lose theirfreq
attribute (:issue:`21282`) - Bug in
iat
where using it to assign an incompatible value would create a new column (:issue:`23236`)
- Bug in :func:`DataFrame.fillna` where a
ValueError
would raise when one column contained adatetime64[ns, tz]
dtype (:issue:`15522`) - Bug in :func:`Series.hasnans` that could be incorrectly cached and return incorrect answers if null elements are introduced after an initial call (:issue:`19700`)
- :func:`Series.isin` now treats all NaN-floats as equal also for
np.object_
-dtype. This behavior is consistent with the behavior for float64 (:issue:`22119`) - :func:`unique` no longer mangles NaN-floats and the
NaT
-object fornp.object_
-dtype, i.e.NaT
is no longer coerced to a NaN-value and is treated as a different entity. (:issue:`22295`) - :class:`DataFrame` and :class:`Series` now properly handle numpy masked arrays with hardened masks. Previously, constructing a DataFrame or Series from a masked array with a hard mask would create a pandas object containing the underlying value, rather than the expected NaN. (:issue:`24574`)
- Bug in :class:`DataFrame` constructor where
dtype
argument was not honored when handling numpy masked record arrays. (:issue:`24874`)
- Bug in :func:`io.formats.style.Styler.applymap` where
subset=
with :class:`MultiIndex` slice would reduce to :class:`Series` (:issue:`19861`) - Removed compatibility for :class:`MultiIndex` pickles prior to version 0.8.0; compatibility with :class:`MultiIndex` pickles from version 0.13 forward is maintained (:issue:`21654`)
- :meth:`MultiIndex.get_loc_level` (and as a consequence,
.loc
on aSeries
orDataFrame
with a :class:`MultiIndex` index) will now raise aKeyError
, rather than returning an emptyslice
, if asked a label which is present in thelevels
but is unused (:issue:`22221`) - :class:`MultiIndex` has gained the :meth:`MultiIndex.from_frame`, it allows constructing a :class:`MultiIndex` object from a :class:`DataFrame` (:issue:`22420`)
- Fix
TypeError
in Python 3 when creating :class:`MultiIndex` in which some levels have mixed types, e.g. when some labels are tuples (:issue:`15457`)
- Bug in :func:`read_csv` in which a column specified with
CategoricalDtype
of boolean categories was not being correctly coerced from string values to booleans (:issue:`20498`) - Bug in :func:`read_csv` in which unicode column names were not being properly recognized with Python 2.x (:issue:`13253`)
- Bug in :meth:`DataFrame.to_sql` when writing timezone aware data (
datetime64[ns, tz]
dtype) would raise aTypeError
(:issue:`9086`) - Bug in :meth:`DataFrame.to_sql` where a naive :class:`DatetimeIndex` would be written as
TIMESTAMP WITH TIMEZONE
type in supported databases, e.g. PostgreSQL (:issue:`23510`) - Bug in :meth:`read_excel` when
parse_cols
is specified with an empty dataset (:issue:`9208`) - :func:`read_html` no longer ignores all-whitespace
<tr>
within<thead>
when considering theskiprows
andheader
arguments. Previously, users had to decrease theirheader
andskiprows
values on such tables to work around the issue. (:issue:`21641`) - :func:`read_excel` will correctly show the deprecation warning for previously deprecated
sheetname
(:issue:`17994`) - :func:`read_csv` and :func:`read_table` will throw
UnicodeError
and not coredump on badly encoded strings (:issue:`22748`) - :func:`read_csv` will correctly parse timezone-aware datetimes (:issue:`22256`)
- Bug in :func:`read_csv` in which memory management was prematurely optimized for the C engine when the data was being read in chunks (:issue:`23509`)
- Bug in :func:`read_csv` in unnamed columns were being improperly identified when extracting a multi-index (:issue:`23687`)
- :func:`read_sas` will parse numbers in sas7bdat-files that have width less than 8 bytes correctly. (:issue:`21616`)
- :func:`read_sas` will correctly parse sas7bdat files with many columns (:issue:`22628`)
- :func:`read_sas` will correctly parse sas7bdat files with data page types having also bit 7 set (so page type is 128 + 256 = 384) (:issue:`16615`)
- Bug in :func:`read_sas` in which an incorrect error was raised on an invalid file format. (:issue:`24548`)
- Bug in :meth:`detect_client_encoding` where potential
IOError
goes unhandled when importing in a mod_wsgi process due to restricted access to stdout. (:issue:`21552`) - Bug in :func:`DataFrame.to_html` with
index=False
misses truncation indicators (...) on truncated DataFrame (:issue:`15019`, :issue:`22783`) - Bug in :func:`DataFrame.to_html` with
index=False
when both columns and row index areMultiIndex
(:issue:`22579`) - Bug in :func:`DataFrame.to_html` with
index_names=False
displaying index name (:issue:`22747`) - Bug in :func:`DataFrame.to_html` with
header=False
not displaying row index names (:issue:`23788`) - Bug in :func:`DataFrame.to_html` with
sparsify=False
that caused it to raiseTypeError
(:issue:`22887`) - Bug in :func:`DataFrame.to_string` that broke column alignment when
index=False
and width of first column's values is greater than the width of first column's header (:issue:`16839`, :issue:`13032`) - Bug in :func:`DataFrame.to_string` that caused representations of :class:`DataFrame` to not take up the whole window (:issue:`22984`)
- Bug in :func:`DataFrame.to_csv` where a single level MultiIndex incorrectly wrote a tuple. Now just the value of the index is written (:issue:`19589`).
- :class:`HDFStore` will raise
ValueError
when theformat
kwarg is passed to the constructor (:issue:`13291`) - Bug in :meth:`HDFStore.append` when appending a :class:`DataFrame` with an empty string column and
min_itemsize
< 8 (:issue:`12242`) - Bug in :func:`read_csv` in which memory leaks occurred in the C engine when parsing
NaN
values due to insufficient cleanup on completion or error (:issue:`21353`) - Bug in :func:`read_csv` in which incorrect error messages were being raised when
skipfooter
was passed in along withnrows
,iterator
, orchunksize
(:issue:`23711`) - Bug in :func:`read_csv` in which :class:`MultiIndex` index names were being improperly handled in the cases when they were not provided (:issue:`23484`)
- Bug in :func:`read_csv` in which unnecessary warnings were being raised when the dialect's values conflicted with the default arguments (:issue:`23761`)
- Bug in :func:`read_html` in which the error message was not displaying the valid flavors when an invalid one was provided (:issue:`23549`)
- Bug in :meth:`read_excel` in which extraneous header names were extracted, even though none were specified (:issue:`11733`)
- Bug in :meth:`read_excel` in which column names were not being properly converted to string sometimes in Python 2.x (:issue:`23874`)
- Bug in :meth:`read_excel` in which
index_col=None
was not being respected and parsing index columns anyway (:issue:`18792`, :issue:`20480`) - Bug in :meth:`read_excel` in which
usecols
was not being validated for proper column names when passed in as a string (:issue:`20480`) - Bug in :meth:`DataFrame.to_dict` when the resulting dict contains non-Python scalars in the case of numeric data (:issue:`23753`)
- :func:`DataFrame.to_string`, :func:`DataFrame.to_html`, :func:`DataFrame.to_latex` will correctly format output when a string is passed as the
float_format
argument (:issue:`21625`, :issue:`22270`) - Bug in :func:`read_csv` that caused it to raise
OverflowError
when trying to use 'inf' asna_value
with integer index column (:issue:`17128`) - Bug in :func:`read_csv` that caused the C engine on Python 3.6+ on Windows to improperly read CSV filenames with accented or special characters (:issue:`15086`)
- Bug in :func:`read_fwf` in which the compression type of a file was not being properly inferred (:issue:`22199`)
- Bug in :func:`pandas.io.json.json_normalize` that caused it to raise
TypeError
when two consecutive elements ofrecord_path
are dicts (:issue:`22706`) - Bug in :meth:`DataFrame.to_stata`, :class:`pandas.io.stata.StataWriter` and :class:`pandas.io.stata.StataWriter117` where a exception would leave a partially written and invalid dta file (:issue:`23573`)
- Bug in :meth:`DataFrame.to_stata` and :class:`pandas.io.stata.StataWriter117` that produced invalid files when using strLs with non-ASCII characters (:issue:`23573`)
- Bug in :class:`HDFStore` that caused it to raise
ValueError
when reading a Dataframe in Python 3 from fixed format written in Python 2 (:issue:`24510`) - Bug in :func:`DataFrame.to_string` and more generally in the floating
repr
formatter. Zeros were not trimmed ifinf
was present in a columns while it was the case with NA values. Zeros are now trimmed as in the presence of NA (:issue:`24861`). - Bug in the
repr
when truncating the number of columns and having a wide last column (:issue:`24849`).
- Bug in :func:`DataFrame.plot.scatter` and :func:`DataFrame.plot.hexbin` caused x-axis label and ticklabels to disappear when colorbar was on in IPython inline backend (:issue:`10611`, :issue:`10678`, and :issue:`20455`)
- Bug in plotting a Series with datetimes using :func:`matplotlib.axes.Axes.scatter` (:issue:`22039`)
- Bug in :func:`DataFrame.plot.bar` caused bars to use multiple colors instead of a single one (:issue:`20585`)
- Bug in validating color parameter caused extra color to be appended to the given color array. This happened to multiple plotting functions using matplotlib. (:issue:`20726`)
- Bug in :func:`.Rolling.min` and :func:`.Rolling.max` with
closed='left'
, a datetime-like index and only one entry in the series leading to segfault (:issue:`24718`) - Bug in :func:`.GroupBy.first` and :func:`.GroupBy.last` with
as_index=False
leading to the loss of timezone information (:issue:`15884`) - Bug in :meth:`DateFrame.resample` when downsampling across a DST boundary (:issue:`8531`)
- Bug in date anchoring for :meth:`DateFrame.resample` with offset :class:`Day` when n > 1 (:issue:`24127`)
- Bug where
ValueError
is wrongly raised when calling :func:`.SeriesGroupBy.count` method of aSeriesGroupBy
when the grouping variable only contains NaNs and numpy version < 1.13 (:issue:`21956`). - Multiple bugs in :func:`.Rolling.min` with
closed='left'
and a datetime-like index leading to incorrect results and also segfault. (:issue:`21704`) - Bug in :meth:`.Resampler.apply` when passing positional arguments to applied func (:issue:`14615`).
- Bug in :meth:`Series.resample` when passing
numpy.timedelta64
toloffset
kwarg (:issue:`7687`). - Bug in :meth:`.Resampler.asfreq` when frequency of
TimedeltaIndex
is a subperiod of a new frequency (:issue:`13022`). - Bug in :meth:`.SeriesGroupBy.mean` when values were integral but could not fit inside of int64, overflowing instead. (:issue:`22487`)
- :func:`.RollingGroupby.agg` and :func:`.ExpandingGroupby.agg` now support multiple aggregation functions as parameters (:issue:`15072`)
- Bug in :meth:`DataFrame.resample` and :meth:`Series.resample` when resampling by a weekly offset (
'W'
) across a DST transition (:issue:`9119`, :issue:`21459`) - Bug in :meth:`DataFrame.expanding` in which the
axis
argument was not being respected during aggregations (:issue:`23372`) - Bug in :meth:`.GroupBy.transform` which caused missing values when the input function can accept a :class:`DataFrame` but renames it (:issue:`23455`).
- Bug in :func:`.GroupBy.nth` where column order was not always preserved (:issue:`20760`)
- Bug in :meth:`.GroupBy.rank` with
method='dense'
andpct=True
when a group has only one member would raise aZeroDivisionError
(:issue:`23666`). - Calling :meth:`.GroupBy.rank` with empty groups and
pct=True
was raising aZeroDivisionError
(:issue:`22519`) - Bug in :meth:`DataFrame.resample` when resampling
NaT
inTimeDeltaIndex
(:issue:`13223`). - Bug in :meth:`DataFrame.groupby` did not respect the
observed
argument when selecting a column and instead always usedobserved=False
(:issue:`23970`) - Bug in :func:`.SeriesGroupBy.pct_change` or :func:`.DataFrameGroupBy.pct_change` would previously work across groups when calculating the percent change, where it now correctly works per group (:issue:`21200`, :issue:`21235`).
- Bug preventing hash table creation with very large number (2^32) of rows (:issue:`22805`)
- Bug in groupby when grouping on categorical causes
ValueError
and incorrect grouping ifobserved=True
andnan
is present in categorical column (:issue:`24740`, :issue:`21151`).
- Bug in :func:`pandas.concat` when joining resampled DataFrames with timezone aware index (:issue:`13783`)
- Bug in :func:`pandas.concat` when joining only
Series
thenames
argument ofconcat
is no longer ignored (:issue:`23490`) - Bug in :meth:`Series.combine_first` with
datetime64[ns, tz]
dtype which would return tz-naive result (:issue:`21469`) - Bug in :meth:`Series.where` and :meth:`DataFrame.where` with
datetime64[ns, tz]
dtype (:issue:`21546`) - Bug in :meth:`DataFrame.where` with an empty DataFrame and empty
cond
having non-bool dtype (:issue:`21947`) - Bug in :meth:`Series.mask` and :meth:`DataFrame.mask` with
list
conditionals (:issue:`21891`) - Bug in :meth:`DataFrame.replace` raises RecursionError when converting OutOfBounds
datetime64[ns, tz]
(:issue:`20380`) - :func:`.GroupBy.rank` now raises a
ValueError
when an invalid value is passed for argumentna_option
(:issue:`22124`) - Bug in :func:`get_dummies` with Unicode attributes in Python 2 (:issue:`22084`)
- Bug in :meth:`DataFrame.replace` raises
RecursionError
when replacing empty lists (:issue:`22083`) - Bug in :meth:`Series.replace` and :meth:`DataFrame.replace` when dict is used as the
to_replace
value and one key in the dict is another key's value, the results were inconsistent between using integer key and using string key (:issue:`20656`) - Bug in :meth:`DataFrame.drop_duplicates` for empty
DataFrame
which incorrectly raises an error (:issue:`20516`) - Bug in :func:`pandas.wide_to_long` when a string is passed to the stubnames argument and a column name is a substring of that stubname (:issue:`22468`)
- Bug in :func:`merge` when merging
datetime64[ns, tz]
data that contained a DST transition (:issue:`18885`) - Bug in :func:`merge_asof` when merging on float values within defined tolerance (:issue:`22981`)
- Bug in :func:`pandas.concat` when concatenating a multicolumn DataFrame with tz-aware data against a DataFrame with a different number of columns (:issue:`22796`)
- Bug in :func:`merge_asof` where confusing error message raised when attempting to merge with missing values (:issue:`23189`)
- Bug in :meth:`DataFrame.nsmallest` and :meth:`DataFrame.nlargest` for dataframes that have a :class:`MultiIndex` for columns (:issue:`23033`).
- Bug in :func:`pandas.melt` when passing column names that are not present in
DataFrame
(:issue:`23575`) - Bug in :meth:`DataFrame.append` with a :class:`Series` with a dateutil timezone would raise a
TypeError
(:issue:`23682`) - Bug in :class:`Series` construction when passing no data and
dtype=str
(:issue:`22477`) - Bug in :func:`cut` with
bins
as an overlappingIntervalIndex
where multiple bins were returned per item instead of raising aValueError
(:issue:`23980`) - Bug in :func:`pandas.concat` when joining
Series
datetimetz withSeries
category would lose timezone (:issue:`23816`) - Bug in :meth:`DataFrame.join` when joining on partial MultiIndex would drop names (:issue:`20452`).
- :meth:`DataFrame.nlargest` and :meth:`DataFrame.nsmallest` now returns the correct n values when keep != 'all' also when tied on the first columns (:issue:`22752`)
- Constructing a DataFrame with an index argument that wasn't already an instance of :class:`.Index` was broken (:issue:`22227`).
- Bug in :class:`DataFrame` prevented list subclasses to be used to construction (:issue:`21226`)
- Bug in :func:`DataFrame.unstack` and :func:`DataFrame.pivot_table` returning a misleading error message when the resulting DataFrame has more elements than int32 can handle. Now, the error message is improved, pointing towards the actual problem (:issue:`20601`)
- Bug in :func:`DataFrame.unstack` where a
ValueError
was raised when unstacking timezone aware values (:issue:`18338`) - Bug in :func:`DataFrame.stack` where timezone aware values were converted to timezone naive values (:issue:`19420`)
- Bug in :func:`merge_asof` where a
TypeError
was raised whenby_col
were timezone aware values (:issue:`21184`) - Bug showing an incorrect shape when throwing error during
DataFrame
construction. (:issue:`20742`)
- Updating a boolean, datetime, or timedelta column to be Sparse now works (:issue:`22367`)
- Bug in :meth:`Series.to_sparse` with Series already holding sparse data not constructing properly (:issue:`22389`)
- Providing a
sparse_index
to the SparseArray constructor no longer defaults the na-value tonp.nan
for all dtypes. The correct na_value fordata.dtype
is now used. - Bug in
SparseArray.nbytes
under-reporting its memory usage by not including the size of its sparse index. - Improved performance of :meth:`Series.shift` for non-NA
fill_value
, as values are no longer converted to a dense array. - Bug in
DataFrame.groupby
not includingfill_value
in the groups for non-NAfill_value
when grouping by a sparse column (:issue:`5078`) - Bug in unary inversion operator (
~
) on aSparseSeries
with boolean values. The performance of this has also been improved (:issue:`22835`) - Bug in :meth:`SparseArary.unique` not returning the unique values (:issue:`19595`)
- Bug in :meth:`SparseArray.nonzero` and :meth:`SparseDataFrame.dropna` returning shifted/incorrect results (:issue:`21172`)
- Bug in :meth:`DataFrame.apply` where dtypes would lose sparseness (:issue:`23744`)
- Bug in :func:`concat` when concatenating a list of :class:`Series` with all-sparse values changing the
fill_value
and converting to a dense Series (:issue:`24371`)
- :meth:`~pandas.io.formats.style.Styler.background_gradient` now takes a
text_color_threshold
parameter to automatically lighten the text color based on the luminance of the background color. This improves readability with dark background colors without the need to limit the background colormap range. (:issue:`21258`) - :meth:`~pandas.io.formats.style.Styler.background_gradient` now also supports tablewise application (in addition to rowwise and columnwise) with
axis=None
(:issue:`15204`) - :meth:`~pandas.io.formats.style.Styler.bar` now also supports tablewise application (in addition to rowwise and columnwise) with
axis=None
and setting clipping range withvmin
andvmax
(:issue:`21548` and :issue:`21526`).NaN
values are also handled properly.
- Building pandas for development now requires
cython >= 0.28.2
(:issue:`21688`) - Testing pandas now requires
hypothesis>=3.58
. You can find the Hypothesis docs here, and a pandas-specific introduction :ref:`in the contributing guide <using-hypothesis>`. (:issue:`22280`) - Building pandas on macOS now targets minimum macOS 10.9 if run on macOS 10.9 or above (:issue:`23424`)
- Bug where C variables were declared with external linkage causing import errors if certain other C libraries were imported before pandas. (:issue:`24113`)
.. contributors:: v0.23.4..v0.24.0