forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalgorithms.py
129 lines (87 loc) · 3.25 KB
/
algorithms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import warnings
from importlib import import_module
import numpy as np
import pandas as pd
from pandas.util import testing as tm
for imp in ['pandas.util', 'pandas.tools.hashing']:
try:
hashing = import_module(imp)
break
except (ImportError, TypeError, ValueError):
pass
class Factorize(object):
goal_time = 0.2
params = [True, False]
param_names = ['sort']
def setup(self, sort):
N = 10**5
self.int_idx = pd.Int64Index(np.arange(N).repeat(5))
self.float_idx = pd.Float64Index(np.random.randn(N).repeat(5))
self.string_idx = tm.makeStringIndex(N)
def time_factorize_int(self, sort):
self.int_idx.factorize(sort=sort)
def time_factorize_float(self, sort):
self.float_idx.factorize(sort=sort)
def time_factorize_string(self, sort):
self.string_idx.factorize(sort=sort)
class Duplicated(object):
goal_time = 0.2
params = ['first', 'last', False]
param_names = ['keep']
def setup(self, keep):
N = 10**5
self.int_idx = pd.Int64Index(np.arange(N).repeat(5))
self.float_idx = pd.Float64Index(np.random.randn(N).repeat(5))
self.string_idx = tm.makeStringIndex(N)
def time_duplicated_int(self, keep):
self.int_idx.duplicated(keep=keep)
def time_duplicated_float(self, keep):
self.float_idx.duplicated(keep=keep)
def time_duplicated_string(self, keep):
self.string_idx.duplicated(keep=keep)
class DuplicatedUniqueIndex(object):
goal_time = 0.2
def setup(self):
N = 10**5
self.idx_int_dup = pd.Int64Index(np.arange(N * 5))
# cache is_unique
self.idx_int_dup.is_unique
def time_duplicated_unique_int(self):
self.idx_int_dup.duplicated()
class Match(object):
goal_time = 0.2
def setup(self):
self.uniques = tm.makeStringIndex(1000).values
self.all = self.uniques.repeat(10)
def time_match_string(self):
with warnings.catch_warnings(record=True):
pd.match(self.all, self.uniques)
class Hashing(object):
goal_time = 0.2
def setup_cache(self):
N = 10**5
df = pd.DataFrame(
{'strings': pd.Series(tm.makeStringIndex(10000).take(
np.random.randint(0, 10000, size=N))),
'floats': np.random.randn(N),
'ints': np.arange(N),
'dates': pd.date_range('20110101', freq='s', periods=N),
'timedeltas': pd.timedelta_range('1 day', freq='s', periods=N)})
df['categories'] = df['strings'].astype('category')
df.iloc[10:20] = np.nan
return df
def time_frame(self, df):
hashing.hash_pandas_object(df)
def time_series_int(self, df):
hashing.hash_pandas_object(df['ints'])
def time_series_string(self, df):
hashing.hash_pandas_object(df['strings'])
def time_series_float(self, df):
hashing.hash_pandas_object(df['floats'])
def time_series_categorical(self, df):
hashing.hash_pandas_object(df['categories'])
def time_series_timedeltas(self, df):
hashing.hash_pandas_object(df['timedeltas'])
def time_series_dates(self, df):
hashing.hash_pandas_object(df['dates'])
from .pandas_vb_common import setup # noqa: F401