forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathframe_methods.py
498 lines (341 loc) · 13.7 KB
/
frame_methods.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
import string
import warnings
import numpy as np
import pandas.util.testing as tm
from pandas import (DataFrame, Series, MultiIndex, date_range, period_range,
isnull, NaT)
class GetNumericData(object):
def setup(self):
self.df = DataFrame(np.random.randn(10000, 25))
self.df['foo'] = 'bar'
self.df['bar'] = 'baz'
with warnings.catch_warnings(record=True):
self.df = self.df.consolidate()
def time_frame_get_numeric_data(self):
self.df._get_numeric_data()
class Lookup(object):
def setup(self):
self.df = DataFrame(np.random.randn(10000, 8),
columns=list('abcdefgh'))
self.df['foo'] = 'bar'
self.row_labels = list(self.df.index[::10])[:900]
self.col_labels = list(self.df.columns) * 100
self.row_labels_all = np.array(
list(self.df.index) * len(self.df.columns), dtype='object')
self.col_labels_all = np.array(
list(self.df.columns) * len(self.df.index), dtype='object')
def time_frame_fancy_lookup(self):
self.df.lookup(self.row_labels, self.col_labels)
def time_frame_fancy_lookup_all(self):
self.df.lookup(self.row_labels_all, self.col_labels_all)
class Reindex(object):
def setup(self):
N = 10**3
self.df = DataFrame(np.random.randn(N * 10, N))
self.idx = np.arange(4 * N, 7 * N)
self.df2 = DataFrame(
{c: {0: np.random.randint(0, 2, N).astype(np.bool_),
1: np.random.randint(0, N, N).astype(np.int16),
2: np.random.randint(0, N, N).astype(np.int32),
3: np.random.randint(0, N, N).astype(np.int64)}
[np.random.randint(0, 4)] for c in range(N)})
def time_reindex_axis0(self):
self.df.reindex(self.idx)
def time_reindex_axis1(self):
self.df.reindex(columns=self.idx)
def time_reindex_both_axes(self):
self.df.reindex(index=self.idx, columns=self.idx)
def time_reindex_both_axes_ix(self):
self.df.ix[self.idx, self.idx]
def time_reindex_upcast(self):
self.df2.reindex(np.random.permutation(range(1200)))
class Iteration(object):
def setup(self):
N = 1000
self.df = DataFrame(np.random.randn(N * 10, N))
self.df2 = DataFrame(np.random.randn(N * 50, 10))
self.df3 = DataFrame(np.random.randn(N, 5 * N),
columns=['C' + str(c) for c in range(N * 5)])
def time_iteritems(self):
# (monitor no-copying behaviour)
if hasattr(self.df, '_item_cache'):
self.df._item_cache.clear()
for name, col in self.df.iteritems():
pass
def time_iteritems_cached(self):
for name, col in self.df.iteritems():
pass
def time_iteritems_indexing(self):
for col in self.df3:
self.df3[col]
def time_itertuples(self):
for row in self.df2.itertuples():
pass
def time_iterrows(self):
for row in self.df.iterrows():
pass
class ToString(object):
def setup(self):
self.df = DataFrame(np.random.randn(100, 10))
def time_to_string_floats(self):
self.df.to_string()
class ToHTML(object):
def setup(self):
nrows = 500
self.df2 = DataFrame(np.random.randn(nrows, 10))
self.df2[0] = period_range('2000', periods=nrows)
self.df2[1] = range(nrows)
def time_to_html_mixed(self):
self.df2.to_html()
class Repr(object):
def setup(self):
nrows = 10000
data = np.random.randn(nrows, 10)
arrays = np.tile(np.random.randn(3, int(nrows / 100)), 100)
idx = MultiIndex.from_arrays(arrays)
self.df3 = DataFrame(data, index=idx)
self.df4 = DataFrame(data, index=np.random.randn(nrows))
self.df_tall = DataFrame(np.random.randn(nrows, 10))
self.df_wide = DataFrame(np.random.randn(10, nrows))
def time_html_repr_trunc_mi(self):
self.df3._repr_html_()
def time_html_repr_trunc_si(self):
self.df4._repr_html_()
def time_repr_tall(self):
repr(self.df_tall)
def time_frame_repr_wide(self):
repr(self.df_wide)
class MaskBool(object):
def setup(self):
data = np.random.randn(1000, 500)
df = DataFrame(data)
df = df.where(df > 0)
self.bools = df > 0
self.mask = isnull(df)
def time_frame_mask_bools(self):
self.bools.mask(self.mask)
def time_frame_mask_floats(self):
self.bools.astype(float).mask(self.mask)
class Isnull(object):
def setup(self):
N = 10**3
self.df_no_null = DataFrame(np.random.randn(N, N))
sample = np.array([np.nan, 1.0])
data = np.random.choice(sample, (N, N))
self.df = DataFrame(data)
sample = np.array(list(string.ascii_letters + string.whitespace))
data = np.random.choice(sample, (N, N))
self.df_strings = DataFrame(data)
sample = np.array([NaT, np.nan, None, np.datetime64('NaT'),
np.timedelta64('NaT'), 0, 1, 2.0, '', 'abcd'])
data = np.random.choice(sample, (N, N))
self.df_obj = DataFrame(data)
def time_isnull_floats_no_null(self):
isnull(self.df_no_null)
def time_isnull(self):
isnull(self.df)
def time_isnull_strngs(self):
isnull(self.df_strings)
def time_isnull_obj(self):
isnull(self.df_obj)
class Fillna(object):
params = ([True, False], ['pad', 'bfill'])
param_names = ['inplace', 'method']
def setup(self, inplace, method):
values = np.random.randn(10000, 100)
values[::2] = np.nan
self.df = DataFrame(values)
def time_frame_fillna(self, inplace, method):
self.df.fillna(inplace=inplace, method=method)
class Dropna(object):
params = (['all', 'any'], [0, 1])
param_names = ['how', 'axis']
def setup(self, how, axis):
self.df = DataFrame(np.random.randn(10000, 1000))
self.df.ix[50:1000, 20:50] = np.nan
self.df.ix[2000:3000] = np.nan
self.df.ix[:, 60:70] = np.nan
self.df_mixed = self.df.copy()
self.df_mixed['foo'] = 'bar'
def time_dropna(self, how, axis):
self.df.dropna(how=how, axis=axis)
def time_dropna_axis_mixed_dtypes(self, how, axis):
self.df_mixed.dropna(how=how, axis=axis)
class Count(object):
params = [0, 1]
param_names = ['axis']
def setup(self, axis):
self.df = DataFrame(np.random.randn(10000, 1000))
self.df.ix[50:1000, 20:50] = np.nan
self.df.ix[2000:3000] = np.nan
self.df.ix[:, 60:70] = np.nan
self.df_mixed = self.df.copy()
self.df_mixed['foo'] = 'bar'
self.df.index = MultiIndex.from_arrays([self.df.index, self.df.index])
self.df.columns = MultiIndex.from_arrays([self.df.columns,
self.df.columns])
self.df_mixed.index = MultiIndex.from_arrays([self.df_mixed.index,
self.df_mixed.index])
self.df_mixed.columns = MultiIndex.from_arrays([self.df_mixed.columns,
self.df_mixed.columns])
def time_count_level_multi(self, axis):
self.df.count(axis=axis, level=1)
def time_count_level_mixed_dtypes_multi(self, axis):
self.df_mixed.count(axis=axis, level=1)
class Apply(object):
def setup(self):
self.df = DataFrame(np.random.randn(1000, 100))
self.s = Series(np.arange(1028.0))
self.df2 = DataFrame({i: self.s for i in range(1028)})
self.df3 = DataFrame(np.random.randn(1000, 3), columns=list('ABC'))
def time_apply_user_func(self):
self.df2.apply(lambda x: np.corrcoef(x, self.s)[(0, 1)])
def time_apply_axis_1(self):
self.df.apply(lambda x: x + 1, axis=1)
def time_apply_lambda_mean(self):
self.df.apply(lambda x: x.mean())
def time_apply_np_mean(self):
self.df.apply(np.mean)
def time_apply_pass_thru(self):
self.df.apply(lambda x: x)
def time_apply_ref_by_name(self):
self.df3.apply(lambda x: x['A'] + x['B'], axis=1)
class Dtypes(object):
def setup(self):
self.df = DataFrame(np.random.randn(1000, 1000))
def time_frame_dtypes(self):
self.df.dtypes
class Equals(object):
def setup(self):
N = 10**3
self.float_df = DataFrame(np.random.randn(N, N))
self.float_df_nan = self.float_df.copy()
self.float_df_nan.iloc[-1, -1] = np.nan
self.object_df = DataFrame('foo', index=range(N), columns=range(N))
self.object_df_nan = self.object_df.copy()
self.object_df_nan.iloc[-1, -1] = np.nan
self.nonunique_cols = self.object_df.copy()
self.nonunique_cols.columns = ['A'] * len(self.nonunique_cols.columns)
self.nonunique_cols_nan = self.nonunique_cols.copy()
self.nonunique_cols_nan.iloc[-1, -1] = np.nan
def time_frame_float_equal(self):
self.float_df.equals(self.float_df)
def time_frame_float_unequal(self):
self.float_df.equals(self.float_df_nan)
def time_frame_nonunique_equal(self):
self.nonunique_cols.equals(self.nonunique_cols)
def time_frame_nonunique_unequal(self):
self.nonunique_cols.equals(self.nonunique_cols_nan)
def time_frame_object_equal(self):
self.object_df.equals(self.object_df)
def time_frame_object_unequal(self):
self.object_df.equals(self.object_df_nan)
class Interpolate(object):
params = [None, 'infer']
param_names = ['downcast']
def setup(self, downcast):
N = 10000
# this is the worst case, where every column has NaNs.
self.df = DataFrame(np.random.randn(N, 100))
self.df.values[::2] = np.nan
self.df2 = DataFrame({'A': np.arange(0, N),
'B': np.random.randint(0, 100, N),
'C': np.random.randn(N),
'D': np.random.randn(N)})
self.df2.loc[1::5, 'A'] = np.nan
self.df2.loc[1::5, 'C'] = np.nan
def time_interpolate(self, downcast):
self.df.interpolate(downcast=downcast)
def time_interpolate_some_good(self, downcast):
self.df2.interpolate(downcast=downcast)
class Shift(object):
# frame shift speedup issue-5609
params = [0, 1]
param_names = ['axis']
def setup(self, axis):
self.df = DataFrame(np.random.rand(10000, 500))
def time_shift(self, axis):
self.df.shift(1, axis=axis)
class Nunique(object):
def setup(self):
self.df = DataFrame(np.random.randn(10000, 1000))
def time_frame_nunique(self):
self.df.nunique()
class Duplicated(object):
def setup(self):
n = (1 << 20)
t = date_range('2015-01-01', freq='S', periods=(n // 64))
xs = np.random.randn(n // 64).round(2)
self.df = DataFrame({'a': np.random.randint(-1 << 8, 1 << 8, n),
'b': np.random.choice(t, n),
'c': np.random.choice(xs, n)})
self.df2 = DataFrame(np.random.randn(1000, 100).astype(str)).T
def time_frame_duplicated(self):
self.df.duplicated()
def time_frame_duplicated_wide(self):
self.df2.duplicated()
class XS(object):
params = [0, 1]
param_names = ['axis']
def setup(self, axis):
self.N = 10**4
self.df = DataFrame(np.random.randn(self.N, self.N))
def time_frame_xs(self, axis):
self.df.xs(self.N / 2, axis=axis)
class SortValues(object):
params = [True, False]
param_names = ['ascending']
def setup(self, ascending):
self.df = DataFrame(np.random.randn(1000000, 2), columns=list('AB'))
def time_frame_sort_values(self, ascending):
self.df.sort_values(by='A', ascending=ascending)
class SortIndexByColumns(object):
def setup(self):
N = 10000
K = 10
self.df = DataFrame({'key1': tm.makeStringIndex(N).values.repeat(K),
'key2': tm.makeStringIndex(N).values.repeat(K),
'value': np.random.randn(N * K)})
def time_frame_sort_values_by_columns(self):
self.df.sort_values(by=['key1', 'key2'])
class Quantile(object):
params = [0, 1]
param_names = ['axis']
def setup(self, axis):
self.df = DataFrame(np.random.randn(1000, 3), columns=list('ABC'))
def time_frame_quantile(self, axis):
self.df.quantile([0.1, 0.5], axis=axis)
class GetDtypeCounts(object):
# 2807
def setup(self):
self.df = DataFrame(np.random.randn(10, 10000))
def time_frame_get_dtype_counts(self):
self.df.get_dtype_counts()
def time_info(self):
self.df.info()
class NSort(object):
params = ['first', 'last', 'all']
param_names = ['keep']
def setup(self, keep):
self.df = DataFrame(np.random.randn(100000, 3),
columns=list('ABC'))
def time_nlargest_one_column(self, keep):
self.df.nlargest(100, 'A', keep=keep)
def time_nlargest_two_columns(self, keep):
self.df.nlargest(100, ['A', 'B'], keep=keep)
def time_nsmallest_one_column(self, keep):
self.df.nsmallest(100, 'A', keep=keep)
def time_nsmallest_two_columns(self, keep):
self.df.nsmallest(100, ['A', 'B'], keep=keep)
class Describe(object):
def setup(self):
self.df = DataFrame({
'a': np.random.randint(0, 100, int(1e6)),
'b': np.random.randint(0, 100, int(1e6)),
'c': np.random.randint(0, 100, int(1e6))
})
def time_series_describe(self):
self.df['a'].describe()
def time_dataframe_describe(self):
self.df.describe()
from .pandas_vb_common import setup # noqa: F401