forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalgorithms.py
119 lines (82 loc) · 3.15 KB
/
algorithms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import warnings
from importlib import import_module
import numpy as np
import pandas as pd
from pandas.util import testing as tm
for imp in ['pandas.util', 'pandas.tools.hashing']:
try:
hashing = import_module(imp)
break
except (ImportError, TypeError, ValueError):
pass
class Factorize(object):
params = [True, False]
param_names = ['sort']
def setup(self, sort):
N = 10**5
self.int_idx = pd.Int64Index(np.arange(N).repeat(5))
self.float_idx = pd.Float64Index(np.random.randn(N).repeat(5))
self.string_idx = tm.makeStringIndex(N)
def time_factorize_int(self, sort):
self.int_idx.factorize(sort=sort)
def time_factorize_float(self, sort):
self.float_idx.factorize(sort=sort)
def time_factorize_string(self, sort):
self.string_idx.factorize(sort=sort)
class Duplicated(object):
params = ['first', 'last', False]
param_names = ['keep']
def setup(self, keep):
N = 10**5
self.int_idx = pd.Int64Index(np.arange(N).repeat(5))
self.float_idx = pd.Float64Index(np.random.randn(N).repeat(5))
self.string_idx = tm.makeStringIndex(N)
def time_duplicated_int(self, keep):
self.int_idx.duplicated(keep=keep)
def time_duplicated_float(self, keep):
self.float_idx.duplicated(keep=keep)
def time_duplicated_string(self, keep):
self.string_idx.duplicated(keep=keep)
class DuplicatedUniqueIndex(object):
def setup(self):
N = 10**5
self.idx_int_dup = pd.Int64Index(np.arange(N * 5))
# cache is_unique
self.idx_int_dup.is_unique
def time_duplicated_unique_int(self):
self.idx_int_dup.duplicated()
class Match(object):
def setup(self):
self.uniques = tm.makeStringIndex(1000).values
self.all = self.uniques.repeat(10)
def time_match_string(self):
with warnings.catch_warnings(record=True):
pd.match(self.all, self.uniques)
class Hashing(object):
def setup_cache(self):
N = 10**5
df = pd.DataFrame(
{'strings': pd.Series(tm.makeStringIndex(10000).take(
np.random.randint(0, 10000, size=N))),
'floats': np.random.randn(N),
'ints': np.arange(N),
'dates': pd.date_range('20110101', freq='s', periods=N),
'timedeltas': pd.timedelta_range('1 day', freq='s', periods=N)})
df['categories'] = df['strings'].astype('category')
df.iloc[10:20] = np.nan
return df
def time_frame(self, df):
hashing.hash_pandas_object(df)
def time_series_int(self, df):
hashing.hash_pandas_object(df['ints'])
def time_series_string(self, df):
hashing.hash_pandas_object(df['strings'])
def time_series_float(self, df):
hashing.hash_pandas_object(df['floats'])
def time_series_categorical(self, df):
hashing.hash_pandas_object(df['categories'])
def time_series_timedeltas(self, df):
hashing.hash_pandas_object(df['timedeltas'])
def time_series_dates(self, df):
hashing.hash_pandas_object(df['dates'])
from .pandas_vb_common import setup # noqa: F401