-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcalculate_score.py
331 lines (306 loc) · 13.5 KB
/
calculate_score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
import json
from collections import defaultdict
import numpy as np
def parse_response(models):
'''
parse response data from aggregated ans file into modality-organ types
'''
all_model_data = {}
for model_name in models:
response_data = {}
with open(f"response_file/{model_name}.json", 'r') as f:
response = json.load(f)
for data in response:
if data["image_type"] not in response_data:
response_data[data["image_type"]] = [data]
else: response_data[data["image_type"]].append(data)
all_model_data[model_name] = response_data
return all_model_data
def get_score_binary(response, ans):
'''
get binary score used for main results and ablation accuracy
'''
response = response.strip()
if ans == 'yes':
if 'Yes' in response or response.lower() == 'yes' or response.lower() == 'yes.': return 1
else: return 0
else:
if 'No' in response or response.lower() == 'no' or response.lower() == 'no.': return 1
else: return 0
def get_score_dict(response_data, get_score):
'''
get score dict according to probmed data setting for later geting float scores
'''
cur_img_id = response_data[0]['id']
score = defaultdict(list)
score['id'] = [cur_img_id]
modality_score = []
body_part_score = []
entity_score = []
grounding_score = []
for data in response_data:
if data['id'] != cur_img_id: # next image
score['id'].append(data['id'])
cur_img_id = data['id']
if len(modality_score) != 2:
modality_score = [] # one of questions unanswered
score['modality'].append(modality_score)
modality_score = []
if len(body_part_score) != 2:
body_part_score = []
score['body_part'].append(body_part_score)
body_part_score = []
score['entity'].append(entity_score)
entity_id = -1
entity_score = []
score['grounding'].append(grounding_score)
grounding_id = -1
grounding_score = []
if "modality" in data['qa_type']:
modality_score.append(get_score(data['response'], data['gt_ans']))
elif "body_part" in data['qa_type']:
body_part_score.append(get_score(data['response'], data['gt_ans']))
elif data['qa_type'] == 'abnormality':
score['abnormality'].append(get_score(data['response'], data['gt_ans']))
elif "entity" in data['qa_type']:
if data['qa_type'] == "entity_hallu": # abnormality 0
entity_score = [get_score(data['response'], data['gt_ans'])]
else:
if "gt" in data['qa_type']:
entity_id = data['qa_type'].split('_')[-1]
entity_score_tuple = [get_score(data['response'], data['gt_ans'])]
else:
if data['qa_type'].split('_')[-1] != entity_id: # gt question is not answered
continue
entity_score_tuple.append(get_score(data['response'], data['gt_ans']))
assert len(entity_score_tuple) == 2
entity_score.append(entity_score_tuple)
else:
if "gt" in data['qa_type']:
grounding_id = data['qa_type'].split('_')[-1]
grounding_score_tuple = [get_score(data['response'], data['gt_ans'])]
else:
if data['qa_type'].split('_')[-1] != grounding_id: # gt question is not answered
continue
grounding_score_tuple.append(get_score(data['response'], data['gt_ans']))
assert len(grounding_score_tuple) == 2
grounding_score.append(grounding_score_tuple)
score['modality'].append(modality_score)
score['body_part'].append(body_part_score)
score['entity'].append(entity_score)
score['grounding'].append(grounding_score)
return score
def get_score_float(score):
output_score = {}
tmp = [d for d in score['abnormality'] if not np.isnan(d)]
output_score['abnormality'] = {
'acc' : sum(tmp) / len(tmp)*100,
'num' : len(score['abnormality']),
}
tmp = []
count_nan, count_all_ones, count_first_one, count_empty = 0, 0, 0, 0
for t in score['modality']:
if not t:
count_empty += 1
continue
if np.isnan(t).any():
count_nan += 1
if all(elem == 1 for elem in t):
assert not np.isnan(t).any()
count_all_ones += 1
if t[0] == 1:
count_first_one += 1
assert count_nan == 0
output_score['modality'] = {
'acc' : count_all_ones / ((len(score['modality'])-count_nan-count_empty))*100,
'acc w. hallu': count_first_one / ((len(score['modality'])-count_nan-count_empty))*100,
'num' : len(score['modality']) - count_empty
}
tmp = []
count_nan, count_all_ones, count_first_one, count_empty = 0, 0, 0, 0
for t in score['body_part']:
if not t:
count_empty += 1
continue
if np.isnan(t).any():
count_nan += 1
if all(elem == 1 for elem in t):
assert not np.isnan(t).any()
count_all_ones += 1
if t[0] == 1:
count_first_one += 1
assert count_nan == 0
output_score['body_part'] = {
'acc' : count_all_ones / ((len(score['body_part'])-count_nan-count_empty))*100,
'acc w. hallu': count_first_one / ((len(score['body_part'])-count_nan-count_empty))*100,
'num' : len(score['body_part']) - count_empty
}
count_nan = 0
filtered_list = []
for l in score['entity']:
if not l:
continue
if isinstance(l[0], list): # Check if the first item is a list
if all(np.nan in x for x in l):
count_nan += 1
continue
filtered_list.append([x for x in l if np.nan not in x]) # remove [np,nan, 1] from l [[np,nan, 1], [0, 1]]
else:
if np.isnan(l[0]):
count_nan += 1 # remove single [np.nan]
else:
filtered_list.append(l)
count_first_1 = 0
count_all_1 = 0
for l in filtered_list:
assert isinstance(l, list)
if all(x[0] == 1 for x in (l if isinstance(l[0], list) else [l])):
count_first_1 += 1
if all(all(y == 1 for y in x) for x in (l if isinstance(l[0], list) else [l])):
count_all_1 += 1
output_score['entity'] = {
'acc' : count_all_1 / len(filtered_list)*100,
'acc w. hallu' : count_first_1 / len(filtered_list)*100,
'num' : len(score['entity'])
}
filtered_list = []
count_nan = 0
count_empty = 0
for l in score['grounding']:
if not l: # skip empty lists
count_empty += 1
continue
if all(np.nan in x for x in l):
count_nan += 1
continue
filtered_list.append([x for x in l if np.nan not in x])
count_first_1 = 0
count_all_1 = 0
for l in filtered_list:
if isinstance(l, list) and all(isinstance(x, list) for x in l): # check for list of lists
if all(x[0] == 1 for x in (l if isinstance(l[0], list) else [l])):
count_first_1 += 1
if all(all(y == 1 for y in x) for x in l):
count_all_1 += 1
output_score['grounding'] = {
'acc' : count_all_1 / len(filtered_list)*100,
'acc w. hallu' : count_first_1 / len(filtered_list)*100,
'num' : len(score['grounding'])
}
return output_score
def get_scores_probmed(all_model_data):
'''
all_scores: score per modality_body_part: [KEY] acc, acc w.o. adv pair, num (Tables in Appendix)
all_scores_aggr_question: aggregated score per question type: [KEY] acc, acc w.o. adv pair (Table 5 results)
overall_scores_aggr_question: overall aggregated score per question type: [KEY] acc, acc w.o. adv pair (Table 5 last column)
'''
all_scores = {}
all_scores_aggr_question = {}
overall_scores_aggr_question = {}
for model_name, model_response in all_model_data.items():
for image_type, response in model_response.items():
score_dict = get_score_dict(response, get_score=get_score_binary)
score_per_cat = get_score_float(score_dict)
if model_name not in all_scores:
all_scores[model_name] = {}
all_scores[model_name][image_type] = score_per_cat
aggregated = {}
for modality, questions in all_scores[model_name].items():
for question, metrics in questions.items():
if question not in aggregated:
aggregated[question] = {
"acc": 0,
"num": 0
}
if "acc w. hallu" in metrics:
aggregated[question]["acc w. hallu"] = 0
aggregated[question]["acc"] += metrics["acc"] * metrics["num"]
aggregated[question]["num"] += metrics["num"]
if "acc w. hallu" in metrics:
aggregated[question]["acc w. hallu"] += metrics["acc w. hallu"] * metrics["num"]
for question, metrics in aggregated.items():
if metrics["num"] > 0:
metrics["acc"] /= metrics["num"]
if "acc w. hallu" in metrics:
metrics["acc w. hallu"] /= metrics["num"]
all_scores_aggr_question[model_name] = aggregated
for model, question_score in all_scores_aggr_question.items():
overall_scores_aggr_question[model] = {
"acc": 0,
"num": 0,
"acc w.o. adv pair": 0,
"num w.o. adv pair": 0
}
for question, metrics in question_score.items():
overall_scores_aggr_question[model]["acc"] += metrics["acc"] * metrics["num"]
overall_scores_aggr_question[model]["num"] += metrics["num"]
if "acc w. hallu" in metrics:
overall_scores_aggr_question[model]["acc w.o. adv pair"] += metrics["acc w. hallu"] * metrics["num"]
overall_scores_aggr_question[model]["num w.o. adv pair"] += metrics["num"]
if overall_scores_aggr_question[model]["num"] > 0:
overall_scores_aggr_question[model]["acc"] /= overall_scores_aggr_question[model]["num"]
if overall_scores_aggr_question[model]["num w.o. adv pair"] > 0:
overall_scores_aggr_question[model]["acc w.o. adv pair"] /= overall_scores_aggr_question[model]["num w.o. adv pair"]
return all_scores, all_scores_aggr_question, overall_scores_aggr_question
def get_model_score_vqa_rad_ablation(ans_file_name):
response_data = []
if "jsonl" in ans_file_name:
with open(ans_file_name, 'r') as f:
for line in f:
response_data.append(json.loads(line))
else:
with open(ans_file_name, 'r') as f:
response_data = json.load(f)
score = []
for i, data in enumerate(response_data):
if i % 2 == 0:
assert data['gt_ans'] == 'yes'
tmp = []
tmp.append(get_score_binary(data['response'], 'yes'))
else:
assert data['gt_ans'] == 'no'
tmp.append(get_score_binary(data['response'], 'no'))
score.append(tmp)
score_wo_adv = []
score_w_adv = []
for tmp in score:
if tmp[0] == 1:
score_wo_adv.append(1)
if tmp[1] == 1:
score_w_adv.append(1)
else: score_w_adv.append(0)
else:
score_w_adv.append(0)
score_wo_adv.append(0)
assert len(score_w_adv) == len(score_wo_adv)
return sum(score_w_adv)/len(score_w_adv), sum(score_wo_adv)/len(score_wo_adv)
def main():
models = ["chexagent", "gemini", "gpt4v", "llava_v1.6", "llava_v1", "llavamed", "minigptv2", "gpt4o", "med-flamingo", "biomedgpt"]
all_model_data = parse_response(models)
all_scores, all_scores_aggr_question, overall_scores_aggr_question = get_scores_probmed(all_model_data)
# # uncomment the block to print fine-grained accuracy
# print('=== Printing accuracy in Appendix Tables ===')
# for model, v in all_scores.items():
# for image_type, s in v.items():
# print(model, image_type)
# print(s)
# print('=' * 30)
print('=== Printing accuracy aggregated over modality-organ ===')
for model, v in all_scores_aggr_question.items():
print(model, v)
print('=' * 30)
print('=== Printing overall accuracy further aggregated over question types and difference w.&w.o. adv. pairs ===')
for model, overall_score in overall_scores_aggr_question.items():
print(f"{model} acc. w.o. adv. pair: {overall_score['acc w.o. adv pair']}, acc. w. adv. pair: {overall_score['acc w.o. adv pair']}, acc. diff: {overall_score['acc w.o. adv pair']}")
print('=' * 30)
print('=== Printing accuracy on ablation set and difference w.&w.o. adv. pairs ===')
model_names = ["llava_v1.jsonl", "llava_v1.6.jsonl", "llavamed.jsonl", "minigptv2.jsonl", "chexagent.jsonl", "gpt4v.json", "gemini.jsonl", "gpt4o.json", "med-flamingo.jsonl", "biomedgpt.json"]
summ = []
for model in model_names:
score = get_model_score_vqa_rad_ablation(f'ablation/{model}')
print(f"{model} acc. w.o. adv. pair: {score[1]*100}, acc. w. adv. pair: {score[0]*100}, acc. diff: {score[1]*100 - score[0]*100}")
summ.append(score[1]*100 - score[0]*100)
print(f"average drop: {sum(summ)/len(summ)}")
print('=' * 30)
if __name__ == "__main__":
main()