This repository was archived by the owner on Nov 1, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 69
/
Copy pathsmmintrin.h
2465 lines (2365 loc) · 102 KB
/
smmintrin.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*===---- smmintrin.h - SSE4 intrinsics ------------------------------------===
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*===-----------------------------------------------------------------------===
*/
#ifndef _SMMINTRIN_H
#define _SMMINTRIN_H
#include <tmmintrin.h>
/* Define the default attributes for the functions in this file. */
#define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("sse4.1")))
/* SSE4 Rounding macros. */
#define _MM_FROUND_TO_NEAREST_INT 0x00
#define _MM_FROUND_TO_NEG_INF 0x01
#define _MM_FROUND_TO_POS_INF 0x02
#define _MM_FROUND_TO_ZERO 0x03
#define _MM_FROUND_CUR_DIRECTION 0x04
#define _MM_FROUND_RAISE_EXC 0x00
#define _MM_FROUND_NO_EXC 0x08
#define _MM_FROUND_NINT (_MM_FROUND_RAISE_EXC | _MM_FROUND_TO_NEAREST_INT)
#define _MM_FROUND_FLOOR (_MM_FROUND_RAISE_EXC | _MM_FROUND_TO_NEG_INF)
#define _MM_FROUND_CEIL (_MM_FROUND_RAISE_EXC | _MM_FROUND_TO_POS_INF)
#define _MM_FROUND_TRUNC (_MM_FROUND_RAISE_EXC | _MM_FROUND_TO_ZERO)
#define _MM_FROUND_RINT (_MM_FROUND_RAISE_EXC | _MM_FROUND_CUR_DIRECTION)
#define _MM_FROUND_NEARBYINT (_MM_FROUND_NO_EXC | _MM_FROUND_CUR_DIRECTION)
/// \brief Rounds up each element of the 128-bit vector of [4 x float] to an
/// integer and returns the rounded values in a 128-bit vector of
/// [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m128 _mm_ceil_ps(__m128 X);
/// \endcode
///
/// This intrinsic corresponds to the <c> VROUNDPS / ROUNDPS </c> instruction.
///
/// \param X
/// A 128-bit vector of [4 x float] values to be rounded up.
/// \returns A 128-bit vector of [4 x float] containing the rounded values.
#define _mm_ceil_ps(X) _mm_round_ps((X), _MM_FROUND_CEIL)
/// \brief Rounds up each element of the 128-bit vector of [2 x double] to an
/// integer and returns the rounded values in a 128-bit vector of
/// [2 x double].
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m128d _mm_ceil_pd(__m128d X);
/// \endcode
///
/// This intrinsic corresponds to the <c> VROUNDPD / ROUNDPD </c> instruction.
///
/// \param X
/// A 128-bit vector of [2 x double] values to be rounded up.
/// \returns A 128-bit vector of [2 x double] containing the rounded values.
#define _mm_ceil_pd(X) _mm_round_pd((X), _MM_FROUND_CEIL)
/// \brief Copies three upper elements of the first 128-bit vector operand to
/// the corresponding three upper elements of the 128-bit result vector of
/// [4 x float]. Rounds up the lowest element of the second 128-bit vector
/// operand to an integer and copies it to the lowest element of the 128-bit
/// result vector of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m128 _mm_ceil_ss(__m128 X, __m128 Y);
/// \endcode
///
/// This intrinsic corresponds to the <c> VROUNDSS / ROUNDSS </c> instruction.
///
/// \param X
/// A 128-bit vector of [4 x float]. The values stored in bits [127:32] are
/// copied to the corresponding bits of the result.
/// \param Y
/// A 128-bit vector of [4 x float]. The value stored in bits [31:0] is
/// rounded up to the nearest integer and copied to the corresponding bits
/// of the result.
/// \returns A 128-bit vector of [4 x float] containing the copied and rounded
/// values.
#define _mm_ceil_ss(X, Y) _mm_round_ss((X), (Y), _MM_FROUND_CEIL)
/// \brief Copies the upper element of the first 128-bit vector operand to the
/// corresponding upper element of the 128-bit result vector of [2 x double].
/// Rounds up the lower element of the second 128-bit vector operand to an
/// integer and copies it to the lower element of the 128-bit result vector
/// of [2 x double].
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m128d _mm_ceil_sd(__m128d X, __m128d Y);
/// \endcode
///
/// This intrinsic corresponds to the <c> VROUNDSD / ROUNDSD </c> instruction.
///
/// \param X
/// A 128-bit vector of [2 x double]. The value stored in bits [127:64] is
/// copied to the corresponding bits of the result.
/// \param Y
/// A 128-bit vector of [2 x double]. The value stored in bits [63:0] is
/// rounded up to the nearest integer and copied to the corresponding bits
/// of the result.
/// \returns A 128-bit vector of [2 x double] containing the copied and rounded
/// values.
#define _mm_ceil_sd(X, Y) _mm_round_sd((X), (Y), _MM_FROUND_CEIL)
/// \brief Rounds down each element of the 128-bit vector of [4 x float] to an
/// an integer and returns the rounded values in a 128-bit vector of
/// [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m128 _mm_floor_ps(__m128 X);
/// \endcode
///
/// This intrinsic corresponds to the <c> VROUNDPS / ROUNDPS </c> instruction.
///
/// \param X
/// A 128-bit vector of [4 x float] values to be rounded down.
/// \returns A 128-bit vector of [4 x float] containing the rounded values.
#define _mm_floor_ps(X) _mm_round_ps((X), _MM_FROUND_FLOOR)
/// \brief Rounds down each element of the 128-bit vector of [2 x double] to an
/// integer and returns the rounded values in a 128-bit vector of
/// [2 x double].
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m128d _mm_floor_pd(__m128d X);
/// \endcode
///
/// This intrinsic corresponds to the <c> VROUNDPD / ROUNDPD </c> instruction.
///
/// \param X
/// A 128-bit vector of [2 x double].
/// \returns A 128-bit vector of [2 x double] containing the rounded values.
#define _mm_floor_pd(X) _mm_round_pd((X), _MM_FROUND_FLOOR)
/// \brief Copies three upper elements of the first 128-bit vector operand to
/// the corresponding three upper elements of the 128-bit result vector of
/// [4 x float]. Rounds down the lowest element of the second 128-bit vector
/// operand to an integer and copies it to the lowest element of the 128-bit
/// result vector of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m128 _mm_floor_ss(__m128 X, __m128 Y);
/// \endcode
///
/// This intrinsic corresponds to the <c> VROUNDSS / ROUNDSS </c> instruction.
///
/// \param X
/// A 128-bit vector of [4 x float]. The values stored in bits [127:32] are
/// copied to the corresponding bits of the result.
/// \param Y
/// A 128-bit vector of [4 x float]. The value stored in bits [31:0] is
/// rounded down to the nearest integer and copied to the corresponding bits
/// of the result.
/// \returns A 128-bit vector of [4 x float] containing the copied and rounded
/// values.
#define _mm_floor_ss(X, Y) _mm_round_ss((X), (Y), _MM_FROUND_FLOOR)
/// \brief Copies the upper element of the first 128-bit vector operand to the
/// corresponding upper element of the 128-bit result vector of [2 x double].
/// Rounds down the lower element of the second 128-bit vector operand to an
/// integer and copies it to the lower element of the 128-bit result vector
/// of [2 x double].
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m128d _mm_floor_sd(__m128d X, __m128d Y);
/// \endcode
///
/// This intrinsic corresponds to the <c> VROUNDSD / ROUNDSD </c> instruction.
///
/// \param X
/// A 128-bit vector of [2 x double]. The value stored in bits [127:64] is
/// copied to the corresponding bits of the result.
/// \param Y
/// A 128-bit vector of [2 x double]. The value stored in bits [63:0] is
/// rounded down to the nearest integer and copied to the corresponding bits
/// of the result.
/// \returns A 128-bit vector of [2 x double] containing the copied and rounded
/// values.
#define _mm_floor_sd(X, Y) _mm_round_sd((X), (Y), _MM_FROUND_FLOOR)
/// \brief Rounds each element of the 128-bit vector of [4 x float] to an
/// integer value according to the rounding control specified by the second
/// argument and returns the rounded values in a 128-bit vector of
/// [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m128 _mm_round_ps(__m128 X, const int M);
/// \endcode
///
/// This intrinsic corresponds to the <c> VROUNDPS / ROUNDPS </c> instruction.
///
/// \param X
/// A 128-bit vector of [4 x float].
/// \param M
/// An integer value that specifies the rounding operation. \n
/// Bits [7:4] are reserved. \n
/// Bit [3] is a precision exception value: \n
/// 0: A normal PE exception is used \n
/// 1: The PE field is not updated \n
/// Bit [2] is the rounding control source: \n
/// 0: Use bits [1:0] of \a M \n
/// 1: Use the current MXCSR setting \n
/// Bits [1:0] contain the rounding control definition: \n
/// 00: Nearest \n
/// 01: Downward (toward negative infinity) \n
/// 10: Upward (toward positive infinity) \n
/// 11: Truncated
/// \returns A 128-bit vector of [4 x float] containing the rounded values.
#define _mm_round_ps(X, M) __extension__ ({ \
(__m128)__builtin_ia32_roundps((__v4sf)(__m128)(X), (M)); })
/// \brief Copies three upper elements of the first 128-bit vector operand to
/// the corresponding three upper elements of the 128-bit result vector of
/// [4 x float]. Rounds the lowest element of the second 128-bit vector
/// operand to an integer value according to the rounding control specified
/// by the third argument and copies it to the lowest element of the 128-bit
/// result vector of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m128 _mm_round_ss(__m128 X, __m128 Y, const int M);
/// \endcode
///
/// This intrinsic corresponds to the <c> VROUNDSS / ROUNDSS </c> instruction.
///
/// \param X
/// A 128-bit vector of [4 x float]. The values stored in bits [127:32] are
/// copied to the corresponding bits of the result.
/// \param Y
/// A 128-bit vector of [4 x float]. The value stored in bits [31:0] is
/// rounded to the nearest integer using the specified rounding control and
/// copied to the corresponding bits of the result.
/// \param M
/// An integer value that specifies the rounding operation. \n
/// Bits [7:4] are reserved. \n
/// Bit [3] is a precision exception value: \n
/// 0: A normal PE exception is used \n
/// 1: The PE field is not updated \n
/// Bit [2] is the rounding control source: \n
/// 0: Use bits [1:0] of \a M \n
/// 1: Use the current MXCSR setting \n
/// Bits [1:0] contain the rounding control definition: \n
/// 00: Nearest \n
/// 01: Downward (toward negative infinity) \n
/// 10: Upward (toward positive infinity) \n
/// 11: Truncated
/// \returns A 128-bit vector of [4 x float] containing the copied and rounded
/// values.
#define _mm_round_ss(X, Y, M) __extension__ ({ \
(__m128)__builtin_ia32_roundss((__v4sf)(__m128)(X), \
(__v4sf)(__m128)(Y), (M)); })
/// \brief Rounds each element of the 128-bit vector of [2 x double] to an
/// integer value according to the rounding control specified by the second
/// argument and returns the rounded values in a 128-bit vector of
/// [2 x double].
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m128d _mm_round_pd(__m128d X, const int M);
/// \endcode
///
/// This intrinsic corresponds to the <c> VROUNDPD / ROUNDPD </c> instruction.
///
/// \param X
/// A 128-bit vector of [2 x double].
/// \param M
/// An integer value that specifies the rounding operation. \n
/// Bits [7:4] are reserved. \n
/// Bit [3] is a precision exception value: \n
/// 0: A normal PE exception is used \n
/// 1: The PE field is not updated \n
/// Bit [2] is the rounding control source: \n
/// 0: Use bits [1:0] of \a M \n
/// 1: Use the current MXCSR setting \n
/// Bits [1:0] contain the rounding control definition: \n
/// 00: Nearest \n
/// 01: Downward (toward negative infinity) \n
/// 10: Upward (toward positive infinity) \n
/// 11: Truncated
/// \returns A 128-bit vector of [2 x double] containing the rounded values.
#define _mm_round_pd(X, M) __extension__ ({ \
(__m128d)__builtin_ia32_roundpd((__v2df)(__m128d)(X), (M)); })
/// \brief Copies the upper element of the first 128-bit vector operand to the
/// corresponding upper element of the 128-bit result vector of [2 x double].
/// Rounds the lower element of the second 128-bit vector operand to an
/// integer value according to the rounding control specified by the third
/// argument and copies it to the lower element of the 128-bit result vector
/// of [2 x double].
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m128d _mm_round_sd(__m128d X, __m128d Y, const int M);
/// \endcode
///
/// This intrinsic corresponds to the <c> VROUNDSD / ROUNDSD </c> instruction.
///
/// \param X
/// A 128-bit vector of [2 x double]. The value stored in bits [127:64] is
/// copied to the corresponding bits of the result.
/// \param Y
/// A 128-bit vector of [2 x double]. The value stored in bits [63:0] is
/// rounded to the nearest integer using the specified rounding control and
/// copied to the corresponding bits of the result.
/// \param M
/// An integer value that specifies the rounding operation. \n
/// Bits [7:4] are reserved. \n
/// Bit [3] is a precision exception value: \n
/// 0: A normal PE exception is used \n
/// 1: The PE field is not updated \n
/// Bit [2] is the rounding control source: \n
/// 0: Use bits [1:0] of \a M \n
/// 1: Use the current MXCSR setting \n
/// Bits [1:0] contain the rounding control definition: \n
/// 00: Nearest \n
/// 01: Downward (toward negative infinity) \n
/// 10: Upward (toward positive infinity) \n
/// 11: Truncated
/// \returns A 128-bit vector of [2 x double] containing the copied and rounded
/// values.
#define _mm_round_sd(X, Y, M) __extension__ ({ \
(__m128d)__builtin_ia32_roundsd((__v2df)(__m128d)(X), \
(__v2df)(__m128d)(Y), (M)); })
/* SSE4 Packed Blending Intrinsics. */
/// \brief Returns a 128-bit vector of [2 x double] where the values are
/// selected from either the first or second operand as specified by the
/// third operand, the control mask.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m128d _mm_blend_pd(__m128d V1, __m128d V2, const int M);
/// \endcode
///
/// This intrinsic corresponds to the <c> VBLENDPD / BLENDPD </c> instruction.
///
/// \param V1
/// A 128-bit vector of [2 x double].
/// \param V2
/// A 128-bit vector of [2 x double].
/// \param M
/// An immediate integer operand, with mask bits [1:0] specifying how the
/// values are to be copied. The position of the mask bit corresponds to the
/// index of a copied value. When a mask bit is 0, the corresponding 64-bit
/// element in operand \a V1 is copied to the same position in the result.
/// When a mask bit is 1, the corresponding 64-bit element in operand \a V2
/// is copied to the same position in the result.
/// \returns A 128-bit vector of [2 x double] containing the copied values.
#define _mm_blend_pd(V1, V2, M) __extension__ ({ \
(__m128d)__builtin_shufflevector((__v2df)(__m128d)(V1), \
(__v2df)(__m128d)(V2), \
(((M) & 0x01) ? 2 : 0), \
(((M) & 0x02) ? 3 : 1)); })
/// \brief Returns a 128-bit vector of [4 x float] where the values are selected
/// from either the first or second operand as specified by the third
/// operand, the control mask.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m128 _mm_blend_ps(__m128 V1, __m128 V2, const int M);
/// \endcode
///
/// This intrinsic corresponds to the <c> VBLENDPS / BLENDPS </c> instruction.
///
/// \param V1
/// A 128-bit vector of [4 x float].
/// \param V2
/// A 128-bit vector of [4 x float].
/// \param M
/// An immediate integer operand, with mask bits [3:0] specifying how the
/// values are to be copied. The position of the mask bit corresponds to the
/// index of a copied value. When a mask bit is 0, the corresponding 32-bit
/// element in operand \a V1 is copied to the same position in the result.
/// When a mask bit is 1, the corresponding 32-bit element in operand \a V2
/// is copied to the same position in the result.
/// \returns A 128-bit vector of [4 x float] containing the copied values.
#define _mm_blend_ps(V1, V2, M) __extension__ ({ \
(__m128)__builtin_shufflevector((__v4sf)(__m128)(V1), (__v4sf)(__m128)(V2), \
(((M) & 0x01) ? 4 : 0), \
(((M) & 0x02) ? 5 : 1), \
(((M) & 0x04) ? 6 : 2), \
(((M) & 0x08) ? 7 : 3)); })
/// \brief Returns a 128-bit vector of [2 x double] where the values are
/// selected from either the first or second operand as specified by the
/// third operand, the control mask.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VBLENDVPD / BLENDVPD </c> instruction.
///
/// \param __V1
/// A 128-bit vector of [2 x double].
/// \param __V2
/// A 128-bit vector of [2 x double].
/// \param __M
/// A 128-bit vector operand, with mask bits 127 and 63 specifying how the
/// values are to be copied. The position of the mask bit corresponds to the
/// most significant bit of a copied value. When a mask bit is 0, the
/// corresponding 64-bit element in operand \a __V1 is copied to the same
/// position in the result. When a mask bit is 1, the corresponding 64-bit
/// element in operand \a __V2 is copied to the same position in the result.
/// \returns A 128-bit vector of [2 x double] containing the copied values.
static __inline__ __m128d __DEFAULT_FN_ATTRS
_mm_blendv_pd (__m128d __V1, __m128d __V2, __m128d __M)
{
return (__m128d) __builtin_ia32_blendvpd ((__v2df)__V1, (__v2df)__V2,
(__v2df)__M);
}
/// \brief Returns a 128-bit vector of [4 x float] where the values are
/// selected from either the first or second operand as specified by the
/// third operand, the control mask.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VBLENDVPS / BLENDVPS </c> instruction.
///
/// \param __V1
/// A 128-bit vector of [4 x float].
/// \param __V2
/// A 128-bit vector of [4 x float].
/// \param __M
/// A 128-bit vector operand, with mask bits 127, 95, 63, and 31 specifying
/// how the values are to be copied. The position of the mask bit corresponds
/// to the most significant bit of a copied value. When a mask bit is 0, the
/// corresponding 32-bit element in operand \a __V1 is copied to the same
/// position in the result. When a mask bit is 1, the corresponding 32-bit
/// element in operand \a __V2 is copied to the same position in the result.
/// \returns A 128-bit vector of [4 x float] containing the copied values.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_blendv_ps (__m128 __V1, __m128 __V2, __m128 __M)
{
return (__m128) __builtin_ia32_blendvps ((__v4sf)__V1, (__v4sf)__V2,
(__v4sf)__M);
}
/// \brief Returns a 128-bit vector of [16 x i8] where the values are selected
/// from either of the first or second operand as specified by the third
/// operand, the control mask.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VPBLENDVB / PBLENDVB </c> instruction.
///
/// \param __V1
/// A 128-bit vector of [16 x i8].
/// \param __V2
/// A 128-bit vector of [16 x i8].
/// \param __M
/// A 128-bit vector operand, with mask bits 127, 119, 111 ... 7 specifying
/// how the values are to be copied. The position of the mask bit corresponds
/// to the most significant bit of a copied value. When a mask bit is 0, the
/// corresponding 8-bit element in operand \a __V1 is copied to the same
/// position in the result. When a mask bit is 1, the corresponding 8-bit
/// element in operand \a __V2 is copied to the same position in the result.
/// \returns A 128-bit vector of [16 x i8] containing the copied values.
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_blendv_epi8 (__m128i __V1, __m128i __V2, __m128i __M)
{
return (__m128i) __builtin_ia32_pblendvb128 ((__v16qi)__V1, (__v16qi)__V2,
(__v16qi)__M);
}
/// \brief Returns a 128-bit vector of [8 x i16] where the values are selected
/// from either of the first or second operand as specified by the third
/// operand, the control mask.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m128i _mm_blend_epi16(__m128i V1, __m128i V2, const int M);
/// \endcode
///
/// This intrinsic corresponds to the <c> VPBLENDW / PBLENDW </c> instruction.
///
/// \param V1
/// A 128-bit vector of [8 x i16].
/// \param V2
/// A 128-bit vector of [8 x i16].
/// \param M
/// An immediate integer operand, with mask bits [7:0] specifying how the
/// values are to be copied. The position of the mask bit corresponds to the
/// index of a copied value. When a mask bit is 0, the corresponding 16-bit
/// element in operand \a V1 is copied to the same position in the result.
/// When a mask bit is 1, the corresponding 16-bit element in operand \a V2
/// is copied to the same position in the result.
/// \returns A 128-bit vector of [8 x i16] containing the copied values.
#define _mm_blend_epi16(V1, V2, M) __extension__ ({ \
(__m128i)__builtin_shufflevector((__v8hi)(__m128i)(V1), \
(__v8hi)(__m128i)(V2), \
(((M) & 0x01) ? 8 : 0), \
(((M) & 0x02) ? 9 : 1), \
(((M) & 0x04) ? 10 : 2), \
(((M) & 0x08) ? 11 : 3), \
(((M) & 0x10) ? 12 : 4), \
(((M) & 0x20) ? 13 : 5), \
(((M) & 0x40) ? 14 : 6), \
(((M) & 0x80) ? 15 : 7)); })
/* SSE4 Dword Multiply Instructions. */
/// \brief Multiples corresponding elements of two 128-bit vectors of [4 x i32]
/// and returns the lower 32 bits of the each product in a 128-bit vector of
/// [4 x i32].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VPMULLD / PMULLD </c> instruction.
///
/// \param __V1
/// A 128-bit integer vector.
/// \param __V2
/// A 128-bit integer vector.
/// \returns A 128-bit integer vector containing the products of both operands.
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_mullo_epi32 (__m128i __V1, __m128i __V2)
{
return (__m128i) ((__v4su)__V1 * (__v4su)__V2);
}
/// \brief Multiplies corresponding even-indexed elements of two 128-bit
/// vectors of [4 x i32] and returns a 128-bit vector of [2 x i64]
/// containing the products.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VPMULDQ / PMULDQ </c> instruction.
///
/// \param __V1
/// A 128-bit vector of [4 x i32].
/// \param __V2
/// A 128-bit vector of [4 x i32].
/// \returns A 128-bit vector of [2 x i64] containing the products of both
/// operands.
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_mul_epi32 (__m128i __V1, __m128i __V2)
{
return (__m128i) __builtin_ia32_pmuldq128 ((__v4si)__V1, (__v4si)__V2);
}
/* SSE4 Floating Point Dot Product Instructions. */
/// \brief Computes the dot product of the two 128-bit vectors of [4 x float]
/// and returns it in the elements of the 128-bit result vector of
/// [4 x float].
///
/// The immediate integer operand controls which input elements
/// will contribute to the dot product, and where the final results are
/// returned.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m128 _mm_dp_ps(__m128 X, __m128 Y, const int M);
/// \endcode
///
/// This intrinsic corresponds to the <c> VDPPS / DPPS </c> instruction.
///
/// \param X
/// A 128-bit vector of [4 x float].
/// \param Y
/// A 128-bit vector of [4 x float].
/// \param M
/// An immediate integer operand. Mask bits [7:4] determine which elements
/// of the input vectors are used, with bit [4] corresponding to the lowest
/// element and bit [7] corresponding to the highest element of each [4 x
/// float] vector. If a bit is set, the corresponding elements from the two
/// input vectors are used as an input for dot product; otherwise that input
/// is treated as zero. Bits [3:0] determine which elements of the result
/// will receive a copy of the final dot product, with bit [0] corresponding
/// to the lowest element and bit [3] corresponding to the highest element of
/// each [4 x float] subvector. If a bit is set, the dot product is returned
/// in the corresponding element; otherwise that element is set to zero.
/// \returns A 128-bit vector of [4 x float] containing the dot product.
#define _mm_dp_ps(X, Y, M) __extension__ ({ \
(__m128) __builtin_ia32_dpps((__v4sf)(__m128)(X), \
(__v4sf)(__m128)(Y), (M)); })
/// \brief Computes the dot product of the two 128-bit vectors of [2 x double]
/// and returns it in the elements of the 128-bit result vector of
/// [2 x double].
///
/// The immediate integer operand controls which input
/// elements will contribute to the dot product, and where the final results
/// are returned.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m128d _mm_dp_pd(__m128d X, __m128d Y, const int M);
/// \endcode
///
/// This intrinsic corresponds to the <c> VDPPD / DPPD </c> instruction.
///
/// \param X
/// A 128-bit vector of [2 x double].
/// \param Y
/// A 128-bit vector of [2 x double].
/// \param M
/// An immediate integer operand. Mask bits [5:4] determine which elements
/// of the input vectors are used, with bit [4] corresponding to the lowest
/// element and bit [5] corresponding to the highest element of each of [2 x
/// double] vector. If a bit is set, the corresponding elements from the two
/// input vectors are used as an input for dot product; otherwise that input
/// is treated as zero. Bits [1:0] determine which elements of the result
/// will receive a copy of the final dot product, with bit [0] corresponding
/// to the lowest element and bit [3] corresponding to the highest element of
/// each [2 x double] vector. If a bit is set, the dot product is returned in
/// the corresponding element; otherwise that element is set to zero.
#define _mm_dp_pd(X, Y, M) __extension__ ({\
(__m128d) __builtin_ia32_dppd((__v2df)(__m128d)(X), \
(__v2df)(__m128d)(Y), (M)); })
/* SSE4 Streaming Load Hint Instruction. */
/// \brief Loads integer values from a 128-bit aligned memory location to a
/// 128-bit integer vector.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VMOVNTDQA / MOVNTDQA </c> instruction.
///
/// \param __V
/// A pointer to a 128-bit aligned memory location that contains the integer
/// values.
/// \returns A 128-bit integer vector containing the data stored at the
/// specified memory location.
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_stream_load_si128 (__m128i const *__V)
{
return (__m128i) __builtin_nontemporal_load ((const __v2di *) __V);
}
/* SSE4 Packed Integer Min/Max Instructions. */
/// \brief Compares the corresponding elements of two 128-bit vectors of
/// [16 x i8] and returns a 128-bit vector of [16 x i8] containing the lesser
/// of the two values.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VPMINSB / PMINSB </c> instruction.
///
/// \param __V1
/// A 128-bit vector of [16 x i8].
/// \param __V2
/// A 128-bit vector of [16 x i8]
/// \returns A 128-bit vector of [16 x i8] containing the lesser values.
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_min_epi8 (__m128i __V1, __m128i __V2)
{
return (__m128i) __builtin_ia32_pminsb128 ((__v16qi) __V1, (__v16qi) __V2);
}
/// \brief Compares the corresponding elements of two 128-bit vectors of
/// [16 x i8] and returns a 128-bit vector of [16 x i8] containing the
/// greater value of the two.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VPMAXSB / PMAXSB </c> instruction.
///
/// \param __V1
/// A 128-bit vector of [16 x i8].
/// \param __V2
/// A 128-bit vector of [16 x i8].
/// \returns A 128-bit vector of [16 x i8] containing the greater values.
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_max_epi8 (__m128i __V1, __m128i __V2)
{
return (__m128i) __builtin_ia32_pmaxsb128 ((__v16qi) __V1, (__v16qi) __V2);
}
/// \brief Compares the corresponding elements of two 128-bit vectors of
/// [8 x u16] and returns a 128-bit vector of [8 x u16] containing the lesser
/// value of the two.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VPMINUW / PMINUW </c> instruction.
///
/// \param __V1
/// A 128-bit vector of [8 x u16].
/// \param __V2
/// A 128-bit vector of [8 x u16].
/// \returns A 128-bit vector of [8 x u16] containing the lesser values.
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_min_epu16 (__m128i __V1, __m128i __V2)
{
return (__m128i) __builtin_ia32_pminuw128 ((__v8hi) __V1, (__v8hi) __V2);
}
/// \brief Compares the corresponding elements of two 128-bit vectors of
/// [8 x u16] and returns a 128-bit vector of [8 x u16] containing the
/// greater value of the two.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VPMAXUW / PMAXUW </c> instruction.
///
/// \param __V1
/// A 128-bit vector of [8 x u16].
/// \param __V2
/// A 128-bit vector of [8 x u16].
/// \returns A 128-bit vector of [8 x u16] containing the greater values.
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_max_epu16 (__m128i __V1, __m128i __V2)
{
return (__m128i) __builtin_ia32_pmaxuw128 ((__v8hi) __V1, (__v8hi) __V2);
}
/// \brief Compares the corresponding elements of two 128-bit vectors of
/// [4 x i32] and returns a 128-bit vector of [4 x i32] containing the lesser
/// value of the two.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VPMINSD / PMINSD </c> instruction.
///
/// \param __V1
/// A 128-bit vector of [4 x i32].
/// \param __V2
/// A 128-bit vector of [4 x i32].
/// \returns A 128-bit vector of [4 x i32] containing the lesser values.
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_min_epi32 (__m128i __V1, __m128i __V2)
{
return (__m128i) __builtin_ia32_pminsd128 ((__v4si) __V1, (__v4si) __V2);
}
/// \brief Compares the corresponding elements of two 128-bit vectors of
/// [4 x i32] and returns a 128-bit vector of [4 x i32] containing the
/// greater value of the two.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VPMAXSD / PMAXSD </c> instruction.
///
/// \param __V1
/// A 128-bit vector of [4 x i32].
/// \param __V2
/// A 128-bit vector of [4 x i32].
/// \returns A 128-bit vector of [4 x i32] containing the greater values.
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_max_epi32 (__m128i __V1, __m128i __V2)
{
return (__m128i) __builtin_ia32_pmaxsd128 ((__v4si) __V1, (__v4si) __V2);
}
/// \brief Compares the corresponding elements of two 128-bit vectors of
/// [4 x u32] and returns a 128-bit vector of [4 x u32] containing the lesser
/// value of the two.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VPMINUD / PMINUD </c> instruction.
///
/// \param __V1
/// A 128-bit vector of [4 x u32].
/// \param __V2
/// A 128-bit vector of [4 x u32].
/// \returns A 128-bit vector of [4 x u32] containing the lesser values.
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_min_epu32 (__m128i __V1, __m128i __V2)
{
return (__m128i) __builtin_ia32_pminud128((__v4si) __V1, (__v4si) __V2);
}
/// \brief Compares the corresponding elements of two 128-bit vectors of
/// [4 x u32] and returns a 128-bit vector of [4 x u32] containing the
/// greater value of the two.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VPMAXUD / PMAXUD </c> instruction.
///
/// \param __V1
/// A 128-bit vector of [4 x u32].
/// \param __V2
/// A 128-bit vector of [4 x u32].
/// \returns A 128-bit vector of [4 x u32] containing the greater values.
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_max_epu32 (__m128i __V1, __m128i __V2)
{
return (__m128i) __builtin_ia32_pmaxud128((__v4si) __V1, (__v4si) __V2);
}
/* SSE4 Insertion and Extraction from XMM Register Instructions. */
/// \brief Takes the first argument \a X and inserts an element from the second
/// argument \a Y as selected by the third argument \a N. That result then
/// has elements zeroed out also as selected by the third argument \a N. The
/// resulting 128-bit vector of [4 x float] is then returned.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m128 _mm_insert_ps(__m128 X, __m128 Y, const int N);
/// \endcode
///
/// This intrinsic corresponds to the <c> VINSERTPS </c> instruction.
///
/// \param X
/// A 128-bit vector source operand of [4 x float]. With the exception of
/// those bits in the result copied from parameter \a Y and zeroed by bits
/// [3:0] of \a N, all bits from this parameter are copied to the result.
/// \param Y
/// A 128-bit vector source operand of [4 x float]. One single-precision
/// floating-point element from this source, as determined by the immediate
/// parameter, is copied to the result.
/// \param N
/// Specifies which bits from operand \a Y will be copied, which bits in the
/// result they will be be copied to, and which bits in the result will be
/// cleared. The following assignments are made: \n
/// Bits [7:6] specify the bits to copy from operand \a Y: \n
/// 00: Selects bits [31:0] from operand \a Y. \n
/// 01: Selects bits [63:32] from operand \a Y. \n
/// 10: Selects bits [95:64] from operand \a Y. \n
/// 11: Selects bits [127:96] from operand \a Y. \n
/// Bits [5:4] specify the bits in the result to which the selected bits
/// from operand \a Y are copied: \n
/// 00: Copies the selected bits from \a Y to result bits [31:0]. \n
/// 01: Copies the selected bits from \a Y to result bits [63:32]. \n
/// 10: Copies the selected bits from \a Y to result bits [95:64]. \n
/// 11: Copies the selected bits from \a Y to result bits [127:96]. \n
/// Bits[3:0]: If any of these bits are set, the corresponding result
/// element is cleared.
/// \returns A 128-bit vector of [4 x float] containing the copied single-
/// precision floating point elements from the operands.
#define _mm_insert_ps(X, Y, N) __builtin_ia32_insertps128((X), (Y), (N))
/// \brief Extracts a 32-bit integer from a 128-bit vector of [4 x float] and
/// returns it, using the immediate value parameter \a N as a selector.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// int _mm_extract_ps(__m128 X, const int N);
/// \endcode
///
/// This intrinsic corresponds to the <c> VEXTRACTPS / EXTRACTPS </c>
/// instruction.
///
/// \param X
/// A 128-bit vector of [4 x float].
/// \param N
/// An immediate value. Bits [1:0] determines which bits from the argument
/// \a X are extracted and returned: \n
/// 00: Bits [31:0] of parameter \a X are returned. \n
/// 01: Bits [63:32] of parameter \a X are returned. \n
/// 10: Bits [95:64] of parameter \a X are returned. \n
/// 11: Bits [127:96] of parameter \a X are returned.
/// \returns A 32-bit integer containing the extracted 32 bits of float data.
#define _mm_extract_ps(X, N) (__extension__ \
({ union { int __i; float __f; } __t; \
__v4sf __a = (__v4sf)(__m128)(X); \
__t.__f = __a[(N) & 3]; \
__t.__i;}))
/* Miscellaneous insert and extract macros. */
/* Extract a single-precision float from X at index N into D. */
#define _MM_EXTRACT_FLOAT(D, X, N) (__extension__ ({ __v4sf __a = (__v4sf)(X); \
(D) = __a[N]; }))
/* Or together 2 sets of indexes (X and Y) with the zeroing bits (Z) to create
an index suitable for _mm_insert_ps. */
#define _MM_MK_INSERTPS_NDX(X, Y, Z) (((X) << 6) | ((Y) << 4) | (Z))
/* Extract a float from X at index N into the first index of the return. */
#define _MM_PICK_OUT_PS(X, N) _mm_insert_ps (_mm_setzero_ps(), (X), \
_MM_MK_INSERTPS_NDX((N), 0, 0x0e))
/* Insert int into packed integer array at index. */
/// \brief Constructs a 128-bit vector of [16 x i8] by first making a copy of
/// the 128-bit integer vector parameter, and then inserting the lower 8 bits
/// of an integer parameter \a I into an offset specified by the immediate
/// value parameter \a N.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m128i _mm_insert_epi8(__m128i X, int I, const int N);
/// \endcode
///
/// This intrinsic corresponds to the <c> VPINSRB / PINSRB </c> instruction.
///
/// \param X
/// A 128-bit integer vector of [16 x i8]. This vector is copied to the
/// result and then one of the sixteen elements in the result vector is
/// replaced by the lower 8 bits of \a I.
/// \param I
/// An integer. The lower 8 bits of this operand are written to the result
/// beginning at the offset specified by \a N.
/// \param N
/// An immediate value. Bits [3:0] specify the bit offset in the result at
/// which the lower 8 bits of \a I are written. \n
/// 0000: Bits [7:0] of the result are used for insertion. \n
/// 0001: Bits [15:8] of the result are used for insertion. \n
/// 0010: Bits [23:16] of the result are used for insertion. \n
/// 0011: Bits [31:24] of the result are used for insertion. \n
/// 0100: Bits [39:32] of the result are used for insertion. \n
/// 0101: Bits [47:40] of the result are used for insertion. \n
/// 0110: Bits [55:48] of the result are used for insertion. \n
/// 0111: Bits [63:56] of the result are used for insertion. \n
/// 1000: Bits [71:64] of the result are used for insertion. \n
/// 1001: Bits [79:72] of the result are used for insertion. \n
/// 1010: Bits [87:80] of the result are used for insertion. \n
/// 1011: Bits [95:88] of the result are used for insertion. \n
/// 1100: Bits [103:96] of the result are used for insertion. \n
/// 1101: Bits [111:104] of the result are used for insertion. \n
/// 1110: Bits [119:112] of the result are used for insertion. \n
/// 1111: Bits [127:120] of the result are used for insertion.
/// \returns A 128-bit integer vector containing the constructed values.
#define _mm_insert_epi8(X, I, N) (__extension__ \
({ __v16qi __a = (__v16qi)(__m128i)(X); \
__a[(N) & 15] = (I); \
(__m128i)__a;}))
/// \brief Constructs a 128-bit vector of [4 x i32] by first making a copy of
/// the 128-bit integer vector parameter, and then inserting the 32-bit
/// integer parameter \a I at the offset specified by the immediate value
/// parameter \a N.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m128i _mm_insert_epi32(__m128i X, int I, const int N);
/// \endcode
///
/// This intrinsic corresponds to the <c> VPINSRD / PINSRD </c> instruction.
///
/// \param X
/// A 128-bit integer vector of [4 x i32]. This vector is copied to the
/// result and then one of the four elements in the result vector is
/// replaced by \a I.
/// \param I
/// A 32-bit integer that is written to the result beginning at the offset
/// specified by \a N.
/// \param N
/// An immediate value. Bits [1:0] specify the bit offset in the result at
/// which the integer \a I is written. \n
/// 00: Bits [31:0] of the result are used for insertion. \n
/// 01: Bits [63:32] of the result are used for insertion. \n
/// 10: Bits [95:64] of the result are used for insertion. \n
/// 11: Bits [127:96] of the result are used for insertion.
/// \returns A 128-bit integer vector containing the constructed values.
#define _mm_insert_epi32(X, I, N) (__extension__ \
({ __v4si __a = (__v4si)(__m128i)(X); \
__a[(N) & 3] = (I); \
(__m128i)__a;}))
#ifdef __x86_64__
/// \brief Constructs a 128-bit vector of [2 x i64] by first making a copy of
/// the 128-bit integer vector parameter, and then inserting the 64-bit
/// integer parameter \a I, using the immediate value parameter \a N as an
/// insertion location selector.
///
/// \headerfile <x86intrin.h>
///