|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "Reto MIS2\n", |
| 8 | + "Reto Número 1.\n", |
| 9 | + "Realiza una función donde generes el siguiente número de la sucesión Fibonacci a partir del 0 y el 1, se van sumando a pares, de manera que cada número es igual a la suma de sus dos anteriores, de manera que:\n", |
| 10 | + "\n", |
| 11 | + "0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55…\n", |
| 12 | + "\n", |
| 13 | + "Integra en la función fibonacci un ciclo for, donde genere los primeros números de la secuencia fibo. Recuerda poner un print\n", |
| 14 | + "\n", |
| 15 | + "Tip: Sera necesario usar un if y else para cumplir tal propósito." |
| 16 | + ] |
| 17 | + }, |
| 18 | + { |
| 19 | + "cell_type": "code", |
| 20 | + "execution_count": 39, |
| 21 | + "metadata": {}, |
| 22 | + "outputs": [ |
| 23 | + { |
| 24 | + "name": "stdout", |
| 25 | + "output_type": "stream", |
| 26 | + "text": [ |
| 27 | + "[0]\n", |
| 28 | + "[0, 1]\n", |
| 29 | + "[0, 1, 1]\n", |
| 30 | + "[0, 1, 1, 2]\n", |
| 31 | + "[0, 1, 1, 2, 3]\n", |
| 32 | + "[0, 1, 1, 2, 3, 5]\n", |
| 33 | + "[0, 1, 1, 2, 3, 5, 8]\n", |
| 34 | + "[0, 1, 1, 2, 3, 5, 8, 13]\n", |
| 35 | + "[0, 1, 1, 2, 3, 5, 8, 13, 21]\n", |
| 36 | + "[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]\n" |
| 37 | + ] |
| 38 | + }, |
| 39 | + { |
| 40 | + "data": { |
| 41 | + "text/plain": [ |
| 42 | + "[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]" |
| 43 | + ] |
| 44 | + }, |
| 45 | + "execution_count": 39, |
| 46 | + "metadata": {}, |
| 47 | + "output_type": "execute_result" |
| 48 | + } |
| 49 | + ], |
| 50 | + "source": [ |
| 51 | + "def fibonacci(a):\n", |
| 52 | + " respuesta=0\n", |
| 53 | + " lista=[]\n", |
| 54 | + " valor=0\n", |
| 55 | + " for i in range(a+1):\n", |
| 56 | + " if i==0 or i==1:\n", |
| 57 | + " valor+=i\n", |
| 58 | + " lista.append(valor)\n", |
| 59 | + " \n", |
| 60 | + " else:\n", |
| 61 | + " valor=lista[i-1]+lista[i-2]\n", |
| 62 | + " lista.append(valor)\n", |
| 63 | + " \n", |
| 64 | + " print(lista)\n", |
| 65 | + " respuesta=lista \n", |
| 66 | + " return respuesta\n", |
| 67 | + "fibonacci(9)" |
| 68 | + ] |
| 69 | + }, |
| 70 | + { |
| 71 | + "cell_type": "markdown", |
| 72 | + "metadata": {}, |
| 73 | + "source": [ |
| 74 | + "Reto Número 2\n", |
| 75 | + "Integra en la función fibonacci un while en vez del for y que termine hasta que la respuesta final de la secuencia fibonacci sea mayor de 150." |
| 76 | + ] |
| 77 | + }, |
| 78 | + { |
| 79 | + "cell_type": "code", |
| 80 | + "execution_count": 49, |
| 81 | + "metadata": {}, |
| 82 | + "outputs": [ |
| 83 | + { |
| 84 | + "name": "stdout", |
| 85 | + "output_type": "stream", |
| 86 | + "text": [ |
| 87 | + "[0, 1, 1]\n", |
| 88 | + "[0, 1, 1, 2]\n", |
| 89 | + "[0, 1, 1, 2, 3]\n", |
| 90 | + "[0, 1, 1, 2, 3, 5]\n", |
| 91 | + "[0, 1, 1, 2, 3, 5, 8]\n", |
| 92 | + "[0, 1, 1, 2, 3, 5, 8, 13]\n", |
| 93 | + "[0, 1, 1, 2, 3, 5, 8, 13, 21]\n", |
| 94 | + "[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]\n" |
| 95 | + ] |
| 96 | + }, |
| 97 | + { |
| 98 | + "data": { |
| 99 | + "text/plain": [ |
| 100 | + "[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]" |
| 101 | + ] |
| 102 | + }, |
| 103 | + "execution_count": 49, |
| 104 | + "metadata": {}, |
| 105 | + "output_type": "execute_result" |
| 106 | + } |
| 107 | + ], |
| 108 | + "source": [ |
| 109 | + "def fibonacci(a):\n", |
| 110 | + " respuesta=0\n", |
| 111 | + " lista=[]\n", |
| 112 | + " valor=0\n", |
| 113 | + " i=0\n", |
| 114 | + " while i<=a:\n", |
| 115 | + " if i==0 or i==1:\n", |
| 116 | + " valor+=i\n", |
| 117 | + " lista.append(valor)\n", |
| 118 | + " \n", |
| 119 | + " else:\n", |
| 120 | + " valor=lista[i-1]+lista[i-2]\n", |
| 121 | + " lista.append(valor)\n", |
| 122 | + " print(lista)\n", |
| 123 | + " \n", |
| 124 | + " i=i+1\n", |
| 125 | + " respuesta=lista \n", |
| 126 | + " return respuesta\n", |
| 127 | + "fibonacci(9)\n", |
| 128 | + "\n", |
| 129 | + " " |
| 130 | + ] |
| 131 | + }, |
| 132 | + { |
| 133 | + "cell_type": "markdown", |
| 134 | + "metadata": {}, |
| 135 | + "source": [ |
| 136 | + "Generar un rango de 10 a 0." |
| 137 | + ] |
| 138 | + }, |
| 139 | + { |
| 140 | + "cell_type": "code", |
| 141 | + "execution_count": 52, |
| 142 | + "metadata": {}, |
| 143 | + "outputs": [ |
| 144 | + { |
| 145 | + "name": "stdout", |
| 146 | + "output_type": "stream", |
| 147 | + "text": [ |
| 148 | + "[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]\n" |
| 149 | + ] |
| 150 | + } |
| 151 | + ], |
| 152 | + "source": [ |
| 153 | + "rango=list(range(10+1))\n", |
| 154 | + "print(rango)" |
| 155 | + ] |
| 156 | + }, |
| 157 | + { |
| 158 | + "cell_type": "markdown", |
| 159 | + "metadata": {}, |
| 160 | + "source": [ |
| 161 | + "· 31 Dise˜na un programa que, a partir del valor del lado de un cuadrado (3 metros), muestre el valor de su per´ımetro (en\n", |
| 162 | + "metros) y el de su ´area (en metros cuadrados).\n", |
| 163 | + "(El per´ımetro debe darte 12 metros y el ´area 9 metros cuadrados.)\n" |
| 164 | + ] |
| 165 | + }, |
| 166 | + { |
| 167 | + "cell_type": "markdown", |
| 168 | + "metadata": {}, |
| 169 | + "source": [ |
| 170 | + "def area(a):\n", |
| 171 | + " base=int(input(\"ingresa el valor de la base: \"))\n", |
| 172 | + " altura=int(input(\"ingresa el valor de la altura: \"))\n", |
| 173 | + " area=base*altura\n", |
| 174 | + " return area\n", |
| 175 | + "\n", |
| 176 | + "\n", |
| 177 | + "def perimetro(a):\n", |
| 178 | + " base=int(input(\"ingresa el valor de la base: \"))\n", |
| 179 | + " altura=int(input(\"ingresa el valor de la altura: \"))\n", |
| 180 | + " perimetro=base*2+altura*2\n", |
| 181 | + " return perimetro\n", |
| 182 | + "print(f\"el area es:{area(3)}\\nel perimetro: {perimetro(3)}\")\n", |
| 183 | + "\n", |
| 184 | + "\n" |
| 185 | + ] |
| 186 | + }, |
| 187 | + { |
| 188 | + "cell_type": "markdown", |
| 189 | + "metadata": {}, |
| 190 | + "source": [ |
| 191 | + "· 32 Dise˜na un programa que, a partir del valor de la base y de la altura de un tri´angulo (3 y 5 metros, respectivamente),\n", |
| 192 | + "muestre el valor de su ´area (en metros cuadrados).\n", |
| 193 | + "Recuerda que el ´area A de un tri´angulo se puede calcular a partir de la base b y la altura h como A =1/2 bh\n", |
| 194 | + "\n" |
| 195 | + ] |
| 196 | + }, |
| 197 | + { |
| 198 | + "cell_type": "code", |
| 199 | + "execution_count": 59, |
| 200 | + "metadata": {}, |
| 201 | + "outputs": [ |
| 202 | + { |
| 203 | + "name": "stdout", |
| 204 | + "output_type": "stream", |
| 205 | + "text": [ |
| 206 | + "el area del triangulo es: 4.0\n" |
| 207 | + ] |
| 208 | + } |
| 209 | + ], |
| 210 | + "source": [ |
| 211 | + "def trianguloArea(a,b):\n", |
| 212 | + " area=(a*b)/2\n", |
| 213 | + " return area\n", |
| 214 | + "print(f\"el area del triangulo es: {trianguloArea(4,2)}\")\n", |
| 215 | + " " |
| 216 | + ] |
| 217 | + }, |
| 218 | + { |
| 219 | + "cell_type": "code", |
| 220 | + "execution_count": null, |
| 221 | + "metadata": {}, |
| 222 | + "outputs": [], |
| 223 | + "source": [ |
| 224 | + "import math\n", |
| 225 | + "potencia=math.sqrt(pow(6,2))\n", |
| 226 | + "print(potencia)" |
| 227 | + ] |
| 228 | + }, |
| 229 | + { |
| 230 | + "cell_type": "markdown", |
| 231 | + "metadata": {}, |
| 232 | + "source": [ |
| 233 | + "· 38 El ´area A de un tri´angulo se puede calcular a partir del valor de dos de sus lados, a y b, y del ´angulo θ que ´estos\n", |
| 234 | + "forman entre s´ı con la f´ormula A =\n", |
| 235 | + "1\n", |
| 236 | + "2\n", |
| 237 | + "ab sin(θ). Dise˜na un programa que pida al usuario el valor de los dos lados (en metros),\n", |
| 238 | + "el ´angulo que estos forman (en grados), y muestre el valor del ´area.\n", |
| 239 | + "\n", |
| 240 | + "(Ten en cuenta que la funci´on sin de Python trabaja en radianes, as´ı que el ´angulo que leas en grados deber´as pasarlo a\n", |
| 241 | + "radianes sabiendo que π radianes son 180 grados. Prueba que has hecho bien el programa introduciendo los siguientes datos:\n", |
| 242 | + "a = 1, b = 2, θ = 30; el resultado es 0.5.)\n" |
| 243 | + ] |
| 244 | + }, |
| 245 | + { |
| 246 | + "cell_type": "code", |
| 247 | + "execution_count": null, |
| 248 | + "metadata": {}, |
| 249 | + "outputs": [], |
| 250 | + "source": [ |
| 251 | + "import math\n", |
| 252 | + "def area(base,altura,angulo):\n", |
| 253 | + " \n", |
| 254 | + " a=base,b=altura,c=angulo\n", |
| 255 | + " area=((a*b)*math.sin(math.radians(c)))/2\n", |
| 256 | + " \n", |
| 257 | + "base=float(input(\"ingresar la base: \"))\n", |
| 258 | + "altura=float(input(\"ingresar altura: \"))\n", |
| 259 | + "angulo=float(input(\"ingresar el angulo(grad): \")) \n", |
| 260 | + "print(f\"el area es: {area(base,altura,angulo)}\")" |
| 261 | + ] |
| 262 | + }, |
| 263 | + { |
| 264 | + "cell_type": "code", |
| 265 | + "execution_count": null, |
| 266 | + "metadata": {}, |
| 267 | + "outputs": [], |
| 268 | + "source": [] |
| 269 | + } |
| 270 | + ], |
| 271 | + "metadata": { |
| 272 | + "kernelspec": { |
| 273 | + "display_name": "Python 3", |
| 274 | + "language": "python", |
| 275 | + "name": "python3" |
| 276 | + }, |
| 277 | + "language_info": { |
| 278 | + "codemirror_mode": { |
| 279 | + "name": "ipython", |
| 280 | + "version": 3 |
| 281 | + }, |
| 282 | + "file_extension": ".py", |
| 283 | + "mimetype": "text/x-python", |
| 284 | + "name": "python", |
| 285 | + "nbconvert_exporter": "python", |
| 286 | + "pygments_lexer": "ipython3", |
| 287 | + "version": "3.7.1" |
| 288 | + } |
| 289 | + }, |
| 290 | + "nbformat": 4, |
| 291 | + "nbformat_minor": 2 |
| 292 | +} |
0 commit comments