-
Notifications
You must be signed in to change notification settings - Fork 610
/
Copy pathput_alibabacloud.rb
75 lines (66 loc) · 3.53 KB
/
put_alibabacloud.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# Licensed to Elasticsearch B.V. under one or more contributor
# license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright
# ownership. Elasticsearch B.V. licenses this file to you under
# the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
# Auto generated from commit f284cc16f4d4b4289bc679aa1529bb504190fe80
# @see https://github.com/elastic/elasticsearch-specification
#
module Elasticsearch
module API
module Inference
module Actions
# Create an AlibabaCloud AI Search inference endpoint.
# Create an inference endpoint to perform an inference task with the +alibabacloud-ai-search+ service.
# When you create an inference endpoint, the associated machine learning model is automatically deployed if it is not already running.
# After creating the endpoint, wait for the model deployment to complete before using it.
# To verify the deployment status, use the get trained model statistics API.
# Look for +"state": "fully_allocated"+ in the response and ensure that the +"allocation_count"+ matches the +"target_allocation_count"+.
# Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources.
#
# @option arguments [String] :task_type The type of the inference task that the model will perform. (*Required*)
# @option arguments [String] :alibabacloud_inference_id The unique identifier of the inference endpoint. (*Required*)
# @option arguments [Hash] :headers Custom HTTP headers
# @option arguments [Hash] :body request body
#
# @see https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-inference-put-alibabacloud
#
def put_alibabacloud(arguments = {})
request_opts = { endpoint: arguments[:endpoint] || 'inference.put_alibabacloud' }
defined_params = [:task_type, :alibabacloud_inference_id].each_with_object({}) do |variable, set_variables|
set_variables[variable] = arguments[variable] if arguments.key?(variable)
end
request_opts[:defined_params] = defined_params unless defined_params.empty?
raise ArgumentError, "Required argument 'task_type' missing" unless arguments[:task_type]
unless arguments[:alibabacloud_inference_id]
raise ArgumentError,
"Required argument 'alibabacloud_inference_id' missing"
end
arguments = arguments.clone
headers = arguments.delete(:headers) || {}
body = arguments.delete(:body)
_task_type = arguments.delete(:task_type)
_alibabacloud_inference_id = arguments.delete(:alibabacloud_inference_id)
method = Elasticsearch::API::HTTP_PUT
path = "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_alibabacloud_inference_id)}"
params = {}
Elasticsearch::API::Response.new(
perform_request(method, path, params, body, headers, request_opts)
)
end
end
end
end
end