-
Notifications
You must be signed in to change notification settings - Fork 747
/
Copy pathScavengerDelegate.cpp
950 lines (841 loc) · 41 KB
/
ScavengerDelegate.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
/*******************************************************************************
* Copyright IBM Corp. and others 2019
*
* This program and the accompanying materials are made available under
* the terms of the Eclipse Public License 2.0 which accompanies this
* distribution and is available at https://www.eclipse.org/legal/epl-2.0/
* or the Apache License, Version 2.0 which accompanies this distribution and
* is available at https://www.apache.org/licenses/LICENSE-2.0.
*
* This Source Code may also be made available under the following
* Secondary Licenses when the conditions for such availability set
* forth in the Eclipse Public License, v. 2.0 are satisfied: GNU
* General Public License, version 2 with the GNU Classpath
* Exception [1] and GNU General Public License, version 2 with the
* OpenJDK Assembly Exception [2].
*
* [1] https://www.gnu.org/software/classpath/license.html
* [2] https://openjdk.org/legal/assembly-exception.html
*
* SPDX-License-Identifier: EPL-2.0 OR Apache-2.0 OR GPL-2.0-only WITH Classpath-exception-2.0 OR GPL-2.0-only WITH OpenJDK-assembly-exception-1.0
*******************************************************************************/
#include "omrcfg.h"
#include "j9.h"
#if defined(OMR_GC_MODRON_SCAVENGER)
#include "ScavengerDelegate.hpp"
#include "j9nongenerated.h"
#include "j9consts.h"
#include "mmhook.h"
#include "mmomrhook_internal.h"
#include "mmprivatehook.h"
#include "mmprivatehook_internal.h"
#include "ArrayObjectModel.hpp"
#include "AsyncCallbackHandler.hpp"
#include "ClassLoaderIterator.hpp"
#include "ClassLoaderManager.hpp"
#include "ClassModel.hpp"
#include "Collector.hpp"
#if defined(OMR_GC_MODRON_COMPACTION)
#include "CompactScheme.hpp"
#include "CompactSchemeCheckMarkRoots.hpp"
#include "CompactSchemeFixupRoots.hpp"
#endif /* OMR_GC_MODRON_COMPACTION */
#if defined(OMR_GC_MODRON_CONCURRENT_MARK)
#include "ConcurrentSafepointCallbackJava.hpp"
#include "ConcurrentGC.hpp"
#endif /* OMR_GC_MODRON_CONCURRENT_MARK */
#if defined(J9VM_GC_CONCURRENT_SWEEP)
#include "ConcurrentSweepScheme.hpp"
#endif /* J9VM_GC_CONCURRENT_SWEEP */
#include "ConfigurationDelegate.hpp"
#if JAVA_SPEC_VERSION >= 24
#include "ContinuationSlotIterator.hpp"
#endif /* JAVA_SPEC_VERSION >= 24 */
#include "ContinuationStats.hpp"
#include "EnvironmentStandard.hpp"
#include "ExcessiveGCStats.hpp"
#include "FinalizableObjectBuffer.hpp"
#include "FinalizableReferenceBuffer.hpp"
#include "FinalizerSupport.hpp"
#include "ForwardedHeader.hpp"
#include "FrequentObjectsStats.hpp"
#include "GCExtensions.hpp"
#if defined(J9VM_PROF_EVENT_REPORTING)
#include "GCObjectEvents.hpp"
#endif /* J9VM_PROF_EVENT_REPORTING */
#include "GlobalGCStats.hpp"
#include "GlobalVLHGCStats.hpp"
#include "HeapLinkedFreeHeader.hpp"
#include "HeapMapIterator.hpp"
#include "HeapRegionDescriptorStandard.hpp"
#include "HeapRegionIteratorStandard.hpp"
#include "HeapWalker.hpp"
#include "HotFieldUtil.hpp"
#include "MarkingScheme.hpp"
#include "MarkingSchemeRootMarker.hpp"
#include "MarkingSchemeRootClearer.hpp"
#include "MemorySubSpaceSemiSpace.hpp"
#include "MixedObjectModel.hpp"
#include "MixedObjectScanner.hpp"
#include "ModronAssertions.h"
#include "ObjectAccessBarrier.hpp"
#include "ObjectAllocationInterface.hpp"
#include "OMRVMInterface.hpp"
#include "OwnableSynchronizerObjectBuffer.hpp"
#include "OwnableSynchronizerObjectList.hpp"
#include "ContinuationObjectBuffer.hpp"
#include "ContinuationObjectList.hpp"
#include "VMHelpers.hpp"
#include "ParallelDispatcher.hpp"
#include "ParallelGlobalGC.hpp"
#include "ParallelHeapWalker.hpp"
#include "ParallelSweepScheme.hpp"
#include "PointerArrayObjectScanner.hpp"
#if defined(OMR_ENV_DATA64) && defined(OMR_GC_FULL_POINTERS)
#include "ReadBarrierVerifier.hpp"
#endif /* defined(OMR_ENV_DATA64) && defined(OMR_GC_FULL_POINTERS) */
#include "ReferenceChainWalkerMarkMap.hpp"
#include "ReferenceObjectBuffer.hpp"
#include "ReferenceObjectList.hpp"
#include "ReferenceObjectScanner.hpp"
#include "ScanClassesMode.hpp"
#include "Scavenger.hpp"
#include "ScavengerStats.hpp"
#include "ScavengerBackOutScanner.hpp"
#include "SlotObject.hpp"
#include "StackSlotValidator.hpp"
#include "StandardAccessBarrier.hpp"
#include "SublistFragment.hpp"
#include "StringTable.hpp"
#include "Task.hpp"
#include "UnfinalizedObjectBuffer.hpp"
#include "WorkPacketsConcurrent.hpp"
#include "StackSlotValidator.hpp"
#include "VMInterface.hpp"
#include "VMThreadIterator.hpp"
#include "VMThreadListIterator.hpp"
#include "VMThreadStackSlotIterator.hpp"
class MM_AllocationContext;
#if defined(OMR_GC_CONCURRENT_SCAVENGER)
extern "C" {
void
concurrentScavengerAsyncCallbackHandlerDelegate(J9VMThread *vmThread, IDATA handlerKey, void *userData)
{
concurrentScavengerAsyncCallbackHandler(vmThread->omrVMThread);
}
} /* extern "C" */
#endif /* OMR_GC_CONCURRENT_SCAVENGER */
/**
* Initialize the collector's internal structures and values.
* @return true if initialization completed, false otherwise
*/
bool
MM_ScavengerDelegate::initialize(MM_EnvironmentBase *env)
{
#if defined(OMR_GC_CONCURRENT_SCAVENGER)
if (_extensions->isConcurrentScavengerEnabled()) {
_flushCachesAsyncCallbackKey = _javaVM->internalVMFunctions->J9RegisterAsyncEvent(_javaVM, concurrentScavengerAsyncCallbackHandlerDelegate, NULL);
}
#endif /* OMR_GC_CONCURRENT_SCAVENGER */
return true;
}
/**
* Free any internal structures associated to the receiver.
*/
void
MM_ScavengerDelegate::tearDown(MM_EnvironmentBase *env)
{
}
void
MM_ScavengerDelegate::mainSetupForGC(MM_EnvironmentBase * envBase)
{
_extensions->continuationStats.clear();
/* Remember the candidates of OwnableSynchronizerObject before
* clearing scavenger statistics
*/
/* = survived ownableSynchronizerObjects in nursery space during previous scavenger
* + the new OwnableSynchronizerObject allocations
*/
uintptr_t ownableSynchronizerCandidates = 0;
ownableSynchronizerCandidates += _extensions->scavengerJavaStats._ownableSynchronizerNurserySurvived;
ownableSynchronizerCandidates += _extensions->allocationStats._ownableSynchronizerObjectCount;
/* Clear the global java-only gc statistics */
_extensions->scavengerJavaStats.clear();
/* set the candidates of ownableSynchronizerObject for gc verbose report */
_extensions->scavengerJavaStats._ownableSynchronizerCandidates = ownableSynchronizerCandidates;
/* correspondent lists will be build this scavenge */
_shouldScavengeSoftReferenceObjects = false;
_shouldScavengeWeakReferenceObjects = false;
_shouldScavengePhantomReferenceObjects = false;
/* Record whether finalizable processing is required in this scavenge */
_shouldScavengeFinalizableObjects = _extensions->finalizeListManager->isFinalizableObjectProcessingRequired();
_shouldScavengeUnfinalizedObjects = false;
private_setupForOwnableSynchronizerProcessing(MM_EnvironmentStandard::getEnvironment(envBase));
_shouldScavengeContinuationObjects = false;
_shouldIterateContinuationObjects = false;
/* Sort all hot fields for all classes if scavenger dynamicBreadthFirstScanOrdering is enabled */
if (MM_GCExtensions::OMR_GC_SCAVENGER_SCANORDERING_DYNAMIC_BREADTH_FIRST == _extensions->scavengerScanOrdering) {
MM_HotFieldUtil::sortAllHotFieldData(_javaVM, _extensions->scavengerStats._gcCount);
}
return;
}
void
MM_ScavengerDelegate::workerSetupForGC_clearEnvironmentLangStats(MM_EnvironmentBase *envBase)
{
/* clear thread-local java-only gc stats */
envBase->getGCEnvironment()->_scavengerJavaStats.clear();
envBase->getGCEnvironment()->_continuationStats.clear();
}
void
MM_ScavengerDelegate::reportScavengeEnd(MM_EnvironmentBase * envBase, bool scavengeSuccessful)
{
/* This assert is not valid for concurrent scavenger - given mutator allocation during concurrent phase, it's possible to have more total survived than candidates*/
Assert_GC_true_with_message2(envBase, _extensions->isConcurrentScavengerEnabled() || _extensions->scavengerJavaStats._ownableSynchronizerCandidates >= _extensions->scavengerJavaStats._ownableSynchronizerTotalSurvived,
"[MM_ScavengerDelegate::reportScavengeEnd]: _extensions->scavengerJavaStats: _ownableSynchronizerCandidates=%zu < _ownableSynchronizerTotalSurvived=%zu\n",
_extensions->scavengerJavaStats._ownableSynchronizerCandidates, _extensions->scavengerJavaStats._ownableSynchronizerTotalSurvived);
if (!scavengeSuccessful) {
/* for backout case, the ownableSynchronizerObject lists is restored before scavenge, so all of candidates are survived */
_extensions->scavengerJavaStats._ownableSynchronizerTotalSurvived = _extensions->scavengerJavaStats._ownableSynchronizerCandidates;
_extensions->scavengerJavaStats._ownableSynchronizerNurserySurvived = _extensions->scavengerJavaStats._ownableSynchronizerCandidates;
}
}
void
MM_ScavengerDelegate::mergeGCStats_mergeLangStats(MM_EnvironmentBase * envBase)
{
MM_EnvironmentStandard* env = MM_EnvironmentStandard::getEnvironment(envBase);
MM_ScavengerJavaStats *finalGCJavaStats = &_extensions->scavengerJavaStats;
MM_ScavengerJavaStats *scavJavaStats = &env->getGCEnvironment()->_scavengerJavaStats;
finalGCJavaStats->_unfinalizedCandidates += scavJavaStats->_unfinalizedCandidates;
finalGCJavaStats->_unfinalizedEnqueued += scavJavaStats->_unfinalizedEnqueued;
_extensions->continuationStats.merge(&env->getGCEnvironment()->_continuationStats);
finalGCJavaStats->_ownableSynchronizerCandidates += scavJavaStats->_ownableSynchronizerCandidates;
finalGCJavaStats->_ownableSynchronizerTotalSurvived += scavJavaStats->_ownableSynchronizerTotalSurvived;
finalGCJavaStats->_ownableSynchronizerNurserySurvived += scavJavaStats->_ownableSynchronizerNurserySurvived;
finalGCJavaStats->_continuationCandidates += scavJavaStats->_continuationCandidates;
finalGCJavaStats->_continuationCleared += scavJavaStats->_continuationCleared;
finalGCJavaStats->_weakReferenceStats.merge(&scavJavaStats->_weakReferenceStats);
finalGCJavaStats->_softReferenceStats.merge(&scavJavaStats->_softReferenceStats);
finalGCJavaStats->_phantomReferenceStats.merge(&scavJavaStats->_phantomReferenceStats);
finalGCJavaStats->_monitorReferenceCleared += scavJavaStats->_monitorReferenceCleared;
finalGCJavaStats->_monitorReferenceCandidates += scavJavaStats->_monitorReferenceCandidates;
scavJavaStats->clear();
}
void
MM_ScavengerDelegate::mainThreadGarbageCollect_scavengeComplete(MM_EnvironmentBase * envBase)
{
#if defined(J9VM_GC_FINALIZATION)
/* Alert the finalizer if work needs to be done */
if (this->getFinalizationRequired()) {
omrthread_monitor_enter(_javaVM->finalizeMainMonitor);
_javaVM->finalizeMainFlags |= J9_FINALIZE_FLAGS_MAIN_WAKE_UP;
omrthread_monitor_notify_all(_javaVM->finalizeMainMonitor);
omrthread_monitor_exit(_javaVM->finalizeMainMonitor);
}
#endif
}
void
MM_ScavengerDelegate::mainThreadGarbageCollect_scavengeSuccess(MM_EnvironmentBase *envBase)
{
/* Once a scavenge has been completed successfully ensure that
* identity hash salt for the nursery gets updated
*/
/* Temporarily disabling the update of salt for Concurrent Scavenger. Since salt is changed at the end of a GC cycle,
* object that are allocated and hashed during a cycle would have different hash value before and after the cycle end.
*/
if (!_extensions->isConcurrentScavengerEnabled()) {
_extensions->updateIdentityHashDataForSaltIndex(J9GC_HASH_SALT_NURSERY_INDEX);
}
}
/**
* Java CollectorLanguageInterface will require a global gc if:
* 1. There are classes that should be dynamically unloaded. Classes can only be collected by the globalGC.
* 2. JNI critical sections require that objects cannot be moved.
*/
bool
MM_ScavengerDelegate::internalGarbageCollect_shouldPercolateGarbageCollect(MM_EnvironmentBase *envBase, PercolateReason * percolateReason, U_32 * percolateType)
{
bool shouldPercolate = false;
if (private_shouldPercolateGarbageCollect_classUnloading(envBase)) {
*percolateReason = UNLOADING_CLASSES;
*percolateType = J9MMCONSTANT_IMPLICIT_GC_PERCOLATE_UNLOADING_CLASSES;
shouldPercolate = true;
} else if (private_shouldPercolateGarbageCollect_activeJNICriticalRegions(envBase)) {
Trc_MM_Scavenger_percolate_activeJNICritical(envBase->getLanguageVMThread());
*percolateReason = CRITICAL_REGIONS;
*percolateType = J9MMCONSTANT_IMPLICIT_GC_PERCOLATE_CRITICAL_REGIONS;
shouldPercolate = true;
}
return shouldPercolate;
}
void
MM_ScavengerDelegate::doSlot(MM_EnvironmentStandard *env, omrobjectptr_t *slotPtr, MM_ScavengeScanReason reason, bool *shouldRemember)
{
MM_Scavenger *scavenger = _extensions->scavenger;
switch (reason) {
case SCAN_REASON_SCAVENGE:
*shouldRemember |= scavenger->copyObjectSlot(env, slotPtr);
break;
case SCAN_REASON_FIXUP:
#if defined(OMR_GC_CONCURRENT_SCAVENGER)
scavenger->fixupSlot(slotPtr);
#endif /* OMR_GC_CONCURRENT_SCAVENGER */
break;
case SCAN_REASON_BACKOUT:
#if defined(OMR_GC_CONCURRENT_SCAVENGER)
if (_extensions->concurrentScavenger) {
scavenger->fixupSlotWithoutCompression(slotPtr);
} else
#endif /* OMR_GC_CONCURRENT_SCAVENGER */
{
scavenger->backOutFixSlotWithoutCompression(slotPtr);
}
break;
case SCAN_REASON_SHOULDREMEMBER:
*shouldRemember |= scavenger->shouldRememberSlot(slotPtr);
break;
}
}
#if JAVA_SPEC_VERSION >= 24
void
MM_ScavengerDelegate::doContinuationSlot(MM_EnvironmentStandard *env, omrobjectptr_t *slotPtr, MM_ScavengeScanReason reason, bool *shouldRemember, GC_ContinuationSlotIterator *continuationSlotIterator)
{
if (_extensions->scavenger->isHeapObject(*slotPtr) && !_extensions->heap->objectIsInGap(*slotPtr)) {
doSlot(env, slotPtr, reason, shouldRemember);
} else if (NULL != *slotPtr) {
Assert_MM_true(GC_ContinuationSlotIterator::state_monitor_records == continuationSlotIterator->getState());
}
}
#endif /* JAVA_SPEC_VERSION >= 24 */
void
MM_ScavengerDelegate::doStackSlot(MM_EnvironmentStandard *env, omrobjectptr_t *slotPtr, MM_ScavengeScanReason reason, bool *shouldRemember, void *walkState, const void* stackLocation)
{
if (_extensions->scavenger->isHeapObject(*slotPtr) && !_extensions->heap->objectIsInGap(*slotPtr)) {
doSlot(env, slotPtr, reason, shouldRemember);
}
}
/**
* @todo Provide function documentation
*/
void
stackSlotIteratorForScavenge(J9JavaVM *javaVM, J9Object **slotPtr, void *localData, J9StackWalkState *walkState, const void *stackLocation)
{
StackIteratorData4Scavenge *data = (StackIteratorData4Scavenge *)localData;
data->scavengerDelegate->doStackSlot(data->env, slotPtr, data->reason, data->shouldRemember, walkState, stackLocation);
}
bool
MM_ScavengerDelegate::scanContinuationNativeSlots(MM_EnvironmentStandard *env, omrobjectptr_t objectPtr, MM_ScavengeScanReason reason, bool beingMounted)
{
bool shouldRemember = false;
J9VMThread *currentThread = (J9VMThread *)env->getLanguageVMThread();
/* In STW GC there are no racing carrier threads doing mount and no need for the synchronization. */
bool isConcurrentGC = false;
if (MUTATOR_THREAD == env->getThreadType()) {
isConcurrentGC = _extensions->isConcurrentScavengerInProgress();
} else {
#if defined(OMR_GC_CONCURRENT_SCAVENGER)
isConcurrentGC = _extensions->scavenger->isCurrentPhaseConcurrent();
#endif /* defined(OMR_GC_CONCURRENT_SCAVENGER) */
}
const bool isGlobalGC = false;
if (MM_GCExtensions::needScanStacksForContinuationObject(currentThread, objectPtr, isConcurrentGC, isGlobalGC, beingMounted)) {
StackIteratorData4Scavenge localData;
localData.scavengerDelegate = this;
localData.env = env;
localData.reason = reason;
localData.shouldRemember = &shouldRemember;
GC_VMThreadStackSlotIterator::scanContinuationSlots(currentThread, objectPtr, (void *)&localData, stackSlotIteratorForScavenge, false, false);
#if JAVA_SPEC_VERSION >= 24
J9VMContinuation *continuation = J9VMJDKINTERNALVMCONTINUATION_VMREF(currentThread, objectPtr);
GC_ContinuationSlotIterator continuationSlotIterator(currentThread, continuation);
while (J9Object **slotPtr = continuationSlotIterator.nextSlot()) {
doContinuationSlot(env, slotPtr,reason, &shouldRemember, &continuationSlotIterator);
}
#endif /* JAVA_SPEC_VERSION >= 24 */
if (isConcurrentGC) {
MM_GCExtensions::exitContinuationConcurrentGCScan(currentThread, objectPtr, isGlobalGC);
}
}
return shouldRemember;
}
GC_ObjectScanner *
MM_ScavengerDelegate::getObjectScanner(MM_EnvironmentStandard *env, omrobjectptr_t objectPtr, void *allocSpace, uintptr_t flags, MM_ScavengeScanReason reason, bool *shouldRemember)
{
#if defined(OMR_GC_MODRON_STRICT)
Assert_MM_true((GC_ObjectScanner::scanHeap == flags) ^ (GC_ObjectScanner::scanRoots == flags));
#endif /* defined(OMR_GC_MODRON_STRICT) */
GC_ObjectScanner *objectScanner = NULL;
J9Class *clazzPtr = J9GC_J9OBJECT_CLAZZ(objectPtr, env);
switch(_extensions->objectModel.getScanType(clazzPtr)) {
case GC_ObjectModel::SCAN_MIXED_OBJECT_LINKED:
_extensions->scavenger->deepScan(env, objectPtr, clazzPtr->selfReferencingField1, clazzPtr->selfReferencingField2);
/* Fall through and treat as mixed object (create mixed object scanner) */
case GC_ObjectModel::SCAN_ATOMIC_MARKABLE_REFERENCE_OBJECT:
case GC_ObjectModel::SCAN_MIXED_OBJECT:
case GC_ObjectModel::SCAN_CLASS_OBJECT:
case GC_ObjectModel::SCAN_CLASSLOADER_OBJECT:
objectScanner = GC_MixedObjectScanner::newInstance(env, objectPtr, allocSpace, flags);
break;
case GC_ObjectModel::SCAN_REFERENCE_MIXED_OBJECT:
if (GC_ObjectScanner::isHeapScan(flags)) {
I_32 referenceState = J9GC_J9VMJAVALANGREFERENCE_STATE(env, objectPtr);
bool isReferenceCleared = (GC_ObjectModel::REF_STATE_CLEARED == referenceState) || (GC_ObjectModel::REF_STATE_ENQUEUED == referenceState);
bool isObjectInNewSpace = _extensions->scavenger->isObjectInNewSpace(objectPtr);
bool shouldScavengeReferenceObject = isObjectInNewSpace && !isReferenceCleared;
bool referentMustBeMarked = isReferenceCleared || !isObjectInNewSpace;
bool referentMustBeCleared = false;
uintptr_t referenceObjectOptions = env->_cycleState->_referenceObjectOptions;
uintptr_t referenceObjectType = J9CLASS_FLAGS(clazzPtr) & J9AccClassReferenceMask;
switch (referenceObjectType) {
case J9AccClassReferenceWeak:
referentMustBeCleared = (0 != (referenceObjectOptions & MM_CycleState::references_clear_weak));
if (!referentMustBeCleared && shouldScavengeReferenceObject && !_shouldScavengeWeakReferenceObjects) {
_shouldScavengeWeakReferenceObjects = true;
}
break;
case J9AccClassReferenceSoft:
referentMustBeCleared = (0 != (referenceObjectOptions & MM_CycleState::references_clear_soft));
referentMustBeMarked = referentMustBeMarked || ((0 == (referenceObjectOptions & MM_CycleState::references_soft_as_weak))
&& ((uintptr_t)J9GC_J9VMJAVALANGSOFTREFERENCE_AGE(env, objectPtr) < _extensions->getDynamicMaxSoftReferenceAge())
);
if (!referentMustBeCleared && shouldScavengeReferenceObject && !_shouldScavengeSoftReferenceObjects) {
_shouldScavengeSoftReferenceObjects = true;
}
break;
case J9AccClassReferencePhantom:
referentMustBeCleared = (0 != (referenceObjectOptions & MM_CycleState::references_clear_phantom));
if (!referentMustBeCleared && shouldScavengeReferenceObject && !_shouldScavengePhantomReferenceObjects) {
_shouldScavengePhantomReferenceObjects = true;
}
break;
default:
Assert_MM_unreachable();
}
GC_SlotObject referentPtr(env->getOmrVM(), J9GC_J9VMJAVALANGREFERENCE_REFERENT_ADDRESS(env, objectPtr));
if (referentMustBeCleared) {
/* Discovering this object at this stage in the GC indicates that it is being resurrected. Clear its referent slot. */
referentPtr.writeReferenceToSlot(NULL);
/* record that the reference has been cleared if it's not already in the cleared or enqueued state */
if (!isReferenceCleared) {
J9GC_J9VMJAVALANGREFERENCE_STATE(env, objectPtr) = GC_ObjectModel::REF_STATE_CLEARED;
}
} else if (shouldScavengeReferenceObject) {
env->getGCEnvironment()->_referenceObjectBuffer->add(env, objectPtr);
}
fomrobject_t *referentSlotAddress = referentMustBeMarked ? NULL : referentPtr.readAddressFromSlot();
objectScanner = GC_ReferenceObjectScanner::newInstance(env, objectPtr, referentSlotAddress, allocSpace, flags);
} else {
objectScanner = GC_MixedObjectScanner::newInstance(env, objectPtr, allocSpace, flags);
}
break;
case GC_ObjectModel::SCAN_OWNABLESYNCHRONIZER_OBJECT:
if (GC_ObjectScanner::isHeapScan(flags)) {
private_addOwnableSynchronizerObjectInList(env, objectPtr);
}
objectScanner = GC_MixedObjectScanner::newInstance(env, objectPtr, allocSpace, flags);
break;
case GC_ObjectModel::SCAN_CONTINUATION_OBJECT:
*shouldRemember = scanContinuationNativeSlots(env, objectPtr, reason);
objectScanner = GC_MixedObjectScanner::newInstance(env, objectPtr, allocSpace, flags);
break;
case GC_ObjectModel::SCAN_POINTER_ARRAY_OBJECT:
{
uintptr_t splitAmount = 0;
if (!GC_ObjectScanner::isIndexableObjectNoSplit(flags)) {
splitAmount = _extensions->scavenger->getArraySplitAmount(env, _extensions->indexableObjectModel.getSizeInElements((omrarrayptr_t)objectPtr));
}
objectScanner = GC_PointerArrayObjectScanner::newInstance(env, objectPtr, allocSpace, flags, splitAmount);
}
break;
case GC_ObjectModel::SCAN_FLATTENED_ARRAY_OBJECT:
{
Assert_MM_true(J9_IS_J9CLASS_FLATTENED(clazzPtr));
uintptr_t slotsToDo = 0;
uintptr_t startIndex = 0;
objectScanner = GC_FlattenedArrayObjectScanner::newInstance(env, objectPtr, allocSpace, GC_ObjectScanner::indexableObject | GC_ObjectScanner::indexableObjectNoSplit, slotsToDo, startIndex);
}
break;
case GC_ObjectModel::SCAN_PRIMITIVE_ARRAY_OBJECT:
break;
default:
Assert_GC_true_with_message(env, false, "Bad scan type for object pointer %p\n", objectPtr);
}
return objectScanner;
}
void MM_ScavengerDelegate::flushReferenceObjects(MM_EnvironmentStandard *env)
{
env->getGCEnvironment()->_referenceObjectBuffer->flush(env);
}
bool
MM_ScavengerDelegate::scavengeIndirectObjectSlots(MM_EnvironmentStandard *env, omrobjectptr_t objectPtr)
{
bool shouldBeRemembered = false;
J9Class *classPtr = J9VM_J9CLASS_FROM_HEAPCLASS((J9VMThread*)env->getLanguageVMThread(), objectPtr);
Assert_MM_true(NULL != classPtr);
J9Class *classToScan = classPtr;
do {
volatile omrobjectptr_t *slotPtr = NULL;
GC_ClassIterator classIterator(env, classToScan);
while ((slotPtr = classIterator.nextSlot()) != NULL) {
shouldBeRemembered = _extensions->scavenger->copyObjectSlot(env, slotPtr) || shouldBeRemembered;
}
shouldBeRemembered = _extensions->scavenger->copyObjectSlot(env, (omrobjectptr_t *)&(classToScan->classObject)) || shouldBeRemembered;
classToScan = classToScan->replacedClass;
} while (NULL != classToScan);
return shouldBeRemembered;
}
bool
MM_ScavengerDelegate::hasIndirectReferentsInNewSpace(MM_EnvironmentStandard *env, omrobjectptr_t objectPtr)
{
J9Class *classToScan = J9VM_J9CLASS_FROM_HEAPCLASS((J9VMThread*)env->getLanguageVMThread(), objectPtr);
Assert_MM_true(NULL != classToScan);
/* Check if Class Object should be remembered */
omrobjectptr_t classObjectPtr = (omrobjectptr_t)classToScan->classObject;
if (_extensions->scavenger->isObjectInNewSpace(classObjectPtr)) {
Assert_MM_false(_extensions->scavenger->isObjectInEvacuateMemory(classObjectPtr));
return true;
}
/* Iterate over all slots in a class which contain an object reference */
do {
omrobjectptr_t *slotPtr = NULL;
GC_ClassIterator classIterator(env, classToScan);
while (NULL != (slotPtr = (omrobjectptr_t*)classIterator.nextSlot())) {
omrobjectptr_t objectPtr = *slotPtr;
if (NULL != objectPtr){
if (_extensions->scavenger->isObjectInNewSpace(objectPtr)){
Assert_MM_false(_extensions->scavenger->isObjectInEvacuateMemory(objectPtr));
return true;
}
}
}
classToScan = classToScan->replacedClass;
} while (NULL != classToScan);
return false;
}
#if defined(OMR_GC_CONCURRENT_SCAVENGER)
void
MM_ScavengerDelegate::fixupIndirectObjectSlots(MM_EnvironmentStandard *env, omrobjectptr_t objectPtr)
{
J9Class *clazz = J9VM_J9CLASS_FROM_HEAPCLASS((J9VMThread*)env->getLanguageVMThread(), objectPtr);
Assert_MM_true(NULL != clazz);
J9Class *classToScan = clazz;
do {
volatile omrobjectptr_t *slotPtr = NULL;
GC_ClassIterator classIterator(env, classToScan);
while ((slotPtr = classIterator.nextSlot()) != NULL) {
_extensions->scavenger->fixupSlotWithoutCompression(slotPtr);
}
_extensions->scavenger->fixupSlotWithoutCompression((omrobjectptr_t *)&(classToScan->classObject));
classToScan = classToScan->replacedClass;
} while (NULL != classToScan);
}
#endif /* OMR_GC_CONCURRENT_SCAVENGER */
void
MM_ScavengerDelegate::backOutIndirectObjectSlots(MM_EnvironmentStandard *env, omrobjectptr_t objectPtr)
{
J9Class *clazz = J9VM_J9CLASS_FROM_HEAPCLASS((J9VMThread*)env->getLanguageVMThread(), objectPtr);
Assert_MM_true(NULL != clazz);
J9Class *classToScan = clazz;
do {
volatile omrobjectptr_t *slotPtr = NULL;
GC_ClassIterator classIterator(env, classToScan);
while ((slotPtr = classIterator.nextSlot()) != NULL) {
_extensions->scavenger->backOutFixSlotWithoutCompression(slotPtr);
}
_extensions->scavenger->backOutFixSlotWithoutCompression((omrobjectptr_t *)&(classToScan->classObject));
classToScan = classToScan->replacedClass;
} while (NULL != classToScan);
}
void
MM_ScavengerDelegate::backOutIndirectObjects(MM_EnvironmentStandard *env)
{
GC_SegmentIterator classSegmentIterator(((J9JavaVM*)_omrVM->_language_vm)->classMemorySegments, MEMORY_TYPE_RAM_CLASS);
J9MemorySegment *classMemorySegment;
while (NULL != (classMemorySegment = classSegmentIterator.nextSegment())) {
J9Class *classPtr;
GC_ClassHeapIterator classHeapIterator((J9JavaVM*)_omrVM->_language_vm, classMemorySegment);
while (NULL != (classPtr = classHeapIterator.nextClass())) {
omrobjectptr_t classObject = J9VM_J9CLASS_TO_HEAPCLASS(classPtr);
if (_extensions->objectModel.isRemembered(classObject)) {
_extensions->scavenger->backOutObjectScan(env, classObject);
}
}
}
}
/**
* Reverse a forwarded object.
*
* Backout of the forwarding operation, restoring the original object to its original state.
*
* @note this operation is not thread safe
*
* @param[in] env the environment for the current thread
*/
void
MM_ScavengerDelegate::reverseForwardedObject(MM_EnvironmentBase *env, MM_ForwardedHeader *originalForwardedHeader)
{
if (originalForwardedHeader->isForwardedPointer()) {
omrobjectptr_t objectPtr = originalForwardedHeader->getObject();
MM_GCExtensions *extensions = MM_GCExtensions::getExtensions(_omrVM);
omrobjectptr_t fwdObjectPtr = originalForwardedHeader->getForwardedObject();
J9Class *forwardedClass = J9GC_J9OBJECT_CLAZZ(fwdObjectPtr, env);
Assert_MM_mustBeClass(forwardedClass);
uintptr_t forwardedFlags = J9GC_J9OBJECT_FLAGS_FROM_CLAZZ(fwdObjectPtr, env);
/* If object just has been moved (this scavenge) we should undo hash flags and set hashed/not moved */
if (OBJECT_HEADER_HAS_BEEN_MOVED_IN_CLASS == (forwardedFlags & (OBJECT_HEADER_HAS_BEEN_HASHED_IN_CLASS | OBJECT_HEADER_HAS_BEEN_MOVED_IN_CLASS))) {
forwardedFlags &= ~OBJECT_HEADER_HAS_BEEN_MOVED_IN_CLASS;
forwardedFlags |= OBJECT_HEADER_HAS_BEEN_HASHED_IN_CLASS;
}
extensions->objectModel.setObjectClassAndFlags(objectPtr, forwardedClass, forwardedFlags);
#if defined (OMR_GC_COMPRESSED_POINTERS)
if (compressObjectReferences()) {
/* Restore destroyed overlapped slot in the original object. This slot might need to be reversed
* as well or it may be already reversed - such fixup will be completed at in a later pass.
*/
originalForwardedHeader->restoreDestroyedOverlap();
}
#endif /* defined (OMR_GC_COMPRESSED_POINTERS) */
MM_ObjectAccessBarrier* barrier = extensions->accessBarrier;
/* If the object states are mismatched, the reference object was removed from the reference list.
* This is a non-reversable operation. Adjust the state of the original object and its referent field.
*/
if ((J9CLASS_FLAGS(forwardedClass) & J9AccClassReferenceMask)) {
I_32 forwadedReferenceState = J9GC_J9VMJAVALANGREFERENCE_STATE(env, fwdObjectPtr);
J9GC_J9VMJAVALANGREFERENCE_STATE(env, objectPtr) = forwadedReferenceState;
GC_SlotObject referentSlotObject(_omrVM, J9GC_J9VMJAVALANGREFERENCE_REFERENT_ADDRESS(env, fwdObjectPtr));
if (NULL == referentSlotObject.readReferenceFromSlot()) {
GC_SlotObject slotObject(_omrVM, J9GC_J9VMJAVALANGREFERENCE_REFERENT_ADDRESS(env, objectPtr));
slotObject.writeReferenceToSlot(NULL);
}
/* Copy back the reference link */
barrier->setReferenceLink(objectPtr, barrier->getReferenceLink(fwdObjectPtr));
}
/* Copy back the finalize link */
fomrobject_t *finalizeLinkAddress = barrier->getFinalizeLinkAddress(fwdObjectPtr);
if (NULL != finalizeLinkAddress) {
barrier->setFinalizeLink(objectPtr, barrier->getFinalizeLink(fwdObjectPtr));
}
}
}
#if defined (OMR_GC_COMPRESSED_POINTERS)
void
MM_ScavengerDelegate::fixupDestroyedSlot(MM_EnvironmentBase *env, MM_ForwardedHeader *originalForwardedHeader, MM_MemorySubSpaceSemiSpace *subSpaceNew)
{
/* Nothing to do if overlap slot is not an object reference, and the destroyed slot for indexable objects is the size */
if ((0 != originalForwardedHeader->getPreservedOverlap())
&& !_extensions->objectModel.isIndexable(_extensions->objectModel.getPreservedClass(originalForwardedHeader))
) {
/* Check the first description bit */
bool isObjectSlot = false;
omrobjectptr_t objectPtr = originalForwardedHeader->getObject();
uintptr_t *descriptionPtr = (uintptr_t *)J9GC_J9OBJECT_CLAZZ(objectPtr, env)->instanceDescription;
if (0 != (((uintptr_t)descriptionPtr) & 1)) {
isObjectSlot = 0 != (1 & (((uintptr_t)descriptionPtr) >> 1));
} else {
isObjectSlot = 0 != (1 & *descriptionPtr);
}
if (isObjectSlot) {
bool const compressed = _extensions->compressObjectReferences();
/* Get the uncompressed reference from the slot */
MM_ObjectAccessBarrier* barrier = _extensions->accessBarrier;
omrobjectptr_t survivingCopyAddress = barrier->convertPointerFromToken(originalForwardedHeader->getPreservedOverlap());
/* Check if the address we want to read is aligned (since mis-aligned reads may still be less than a top address but extend beyond it) */
if (0 == ((uintptr_t)survivingCopyAddress & (_extensions->getObjectAlignmentInBytes() - 1))) {
/* Ensure that the address we want to read is within part of the heap which could contain copied objects (tenure or survivor) */
void *topOfObject = (void *)((uintptr_t *)survivingCopyAddress + 1);
if (subSpaceNew->isObjectInNewSpace(survivingCopyAddress, topOfObject) || _extensions->isOld(survivingCopyAddress, topOfObject)) {
/* if the slot points to a reverse-forwarded object, restore the original location (in evacuate space) */
MM_ForwardedHeader reverseForwardedHeader(survivingCopyAddress, compressed);
if (reverseForwardedHeader.isReverseForwardedPointer()) {
/* first slot must be fixed up */
originalForwardedHeader->restoreDestroyedOverlap((uint32_t)barrier->convertTokenFromPointer(reverseForwardedHeader.getReverseForwardedPointer()));
}
}
}
}
}
}
#endif /* defined (OMR_GC_COMPRESSED_POINTERS) */
void
MM_ScavengerDelegate::private_addOwnableSynchronizerObjectInList(MM_EnvironmentStandard *env, omrobjectptr_t object)
{
omrobjectptr_t link = MM_GCExtensions::getExtensions(_extensions)->accessBarrier->isObjectInOwnableSynchronizerList(object);
/* if isObjectInOwnableSynchronizerList() return NULL, it means the object isn't in OwnableSynchronizerList,
* it could be the constructing object which would be added in the list after the construction finish later. ignore the object to avoid duplicated reference in the list.
* For concurrent scavenger, an object that doesn't finish constructing before the start of the STW phase will be added to the list after. As a result, the object may already
* be added to the list (non NULL link) when we scan it during the concurrent phase. We must not add it again here, so check link before proceeding */
if ((NULL != link) && (!_extensions->isConcurrentScavengerEnabled() || (_extensions->isConcurrentScavengerEnabled() && _extensions->scavenger->isObjectInEvacuateMemory(link)))) {
/* this method expects the caller (scanObject) never pass the same object twice, which could cause circular loop when walk through the list.
* the assertion partially could detect duplication case */
Assert_MM_true(_extensions->scavenger->isObjectInEvacuateMemory(link));
env->getGCEnvironment()->_ownableSynchronizerObjectBuffer->add(env, object);
env->getGCEnvironment()->_scavengerJavaStats._ownableSynchronizerTotalSurvived += 1;
if (_extensions->scavenger->isObjectInNewSpace(object)) {
env->getGCEnvironment()->_scavengerJavaStats._ownableSynchronizerNurserySurvived += 1;
}
}
}
void
MM_ScavengerDelegate::private_setupForOwnableSynchronizerProcessing(MM_EnvironmentStandard *env)
{
MM_HeapRegionDescriptorStandard *region = NULL;
GC_HeapRegionIteratorStandard regionIterator(_extensions->heapRegionManager);
while (NULL != (region = regionIterator.nextRegion())) {
MM_HeapRegionDescriptorStandardExtension *regionExtension = MM_ConfigurationDelegate::getHeapRegionDescriptorStandardExtension(env, region);
for (uintptr_t i = 0; i < regionExtension->_maxListIndex; i++) {
MM_OwnableSynchronizerObjectList *list = ®ionExtension->_ownableSynchronizerObjectLists[i];
if ((MEMORY_TYPE_NEW == (region->getTypeFlags() & MEMORY_TYPE_NEW))) {
list->startOwnableSynchronizerProcessing();
} else {
list->backupList();
}
}
}
}
bool
MM_ScavengerDelegate::private_shouldPercolateGarbageCollect_classUnloading(MM_EnvironmentBase *envBase)
{
bool shouldGCPercolate = false;
#if defined(J9VM_GC_DYNAMIC_CLASS_UNLOADING)
shouldGCPercolate = _extensions->getGlobalCollector()->isTimeForGlobalGCKickoff();
#endif
return shouldGCPercolate;
}
bool
MM_ScavengerDelegate::private_shouldPercolateGarbageCollect_activeJNICriticalRegions(MM_EnvironmentBase *envBase)
{
bool shouldGCPercolate = false;
uintptr_t activeCriticalRegions = MM_StandardAccessBarrier::getJNICriticalRegionCount(_extensions);
/* percolate if any active regions */
shouldGCPercolate = (0 != activeCriticalRegions);
return shouldGCPercolate;
}
#if defined(OMR_GC_CONCURRENT_SCAVENGER)
void
MM_ScavengerDelegate::switchConcurrentForThread(MM_EnvironmentBase *env)
{
PORT_ACCESS_FROM_ENVIRONMENT(env);
J9VMThread *vmThread = (J9VMThread *)env->getOmrVMThread()->_language_vmthread;
if (_extensions->isConcurrentScavengerInProgress()) {
void* base = _extensions->scavenger->getEvacuateBase();
void* top = _extensions->scavenger->getEvacuateTop();
/*
* vmThread->readBarrierRangeCheckTop is defined as the last address possible in the evacuate region;
* however, top is the first address above the evacuate region;
* therefore, vmThread->readBarrierRangeCheckTop = top - 1.
* In short, the evacuate region is [vmThread->readBarrierRangeCheckBase, vmThread->readBarrierRangeCheckTop].
*/
vmThread->readBarrierRangeCheckBase = (uintptr_t)base;
vmThread->readBarrierRangeCheckTop = (uintptr_t)top - 1;
#if defined(OMR_GC_COMPRESSED_POINTERS)
if (compressObjectReferences()) {
vmThread->readBarrierRangeCheckBaseCompressed = (U_32)_extensions->accessBarrier->convertTokenFromPointer((mm_j9object_t)vmThread->readBarrierRangeCheckBase);
vmThread->readBarrierRangeCheckTopCompressed = (U_32)_extensions->accessBarrier->convertTokenFromPointer((mm_j9object_t)vmThread->readBarrierRangeCheckTop);
}
#endif /* OMR_GC_COMPRESSED_POINTERS */
if (_extensions->isConcurrentScavengerHWSupported()) {
/* Concurrent Scavenger Page start address must be initialized */
Assert_MM_true(_extensions->getConcurrentScavengerPageStartAddress() != (void *)UDATA_MAX);
/* Nursery should fit selected Concurrent Scavenger Page */
Assert_MM_true(base >= _extensions->getConcurrentScavengerPageStartAddress());
Assert_MM_true(top <= (void *)((uintptr_t)_extensions->getConcurrentScavengerPageStartAddress() + _extensions->getConcurrentScavengerPageSectionSize() * CONCURRENT_SCAVENGER_PAGE_SECTIONS));
uintptr_t sectionCount = ((uintptr_t)top - (uintptr_t)base) / _extensions->getConcurrentScavengerPageSectionSize();
uintptr_t startOffsetInBits = ((uintptr_t)base - (uintptr_t)_extensions->getConcurrentScavengerPageStartAddress()) / _extensions->getConcurrentScavengerPageSectionSize();
uint64_t bitMask = (((uint64_t)1 << sectionCount) - 1) << (CONCURRENT_SCAVENGER_PAGE_SECTIONS - (sectionCount + startOffsetInBits));
if (_extensions->isDebugConcurrentScavengerPageAlignment()) {
void* nurseryBase = OMR_MIN(base, _extensions->scavenger->getSurvivorBase());
void* nurseryTop = OMR_MAX(top, _extensions->scavenger->getSurvivorTop());
void* pageBase = _extensions->getConcurrentScavengerPageStartAddress();
void* pageTop = (void *)((uintptr_t)pageBase + _extensions->getConcurrentScavengerPageSectionSize() * CONCURRENT_SCAVENGER_PAGE_SECTIONS);
j9tty_printf(PORTLIB, "%p: Nursery [%p,%p] Evacuate [%p,%p] GS [%p,%p] Section size 0x%zx, sections %lu bit offset %lu bit mask 0x%zx\n",
vmThread, nurseryBase, nurseryTop, base, top, pageBase, pageTop, _extensions->getConcurrentScavengerPageSectionSize() , sectionCount, startOffsetInBits, bitMask);
}
j9gs_enable(&vmThread->gsParameters, _extensions->getConcurrentScavengerPageStartAddress(), _extensions->getConcurrentScavengerPageSectionSize(), bitMask);
}
} else {
if (_extensions->isConcurrentScavengerHWSupported()) {
j9gs_disable(&vmThread->gsParameters);
}
/*
* By setting readBarrierRangeCheckTop to NULL and readBarrierRangeCheckBase to the highest possible address
* it gives an empty range that contains no address. Therefore,
* when decide whether to read barrier, a simple range is sufficient
*/
vmThread->readBarrierRangeCheckBase = UDATA_MAX;
vmThread->readBarrierRangeCheckTop = 0;
#ifdef OMR_GC_COMPRESSED_POINTERS
/* No need for a runtime check here - it would just waste cycles */
vmThread->readBarrierRangeCheckBaseCompressed = U_32_MAX;
vmThread->readBarrierRangeCheckTopCompressed = 0;
#endif
}
}
void
MM_ScavengerDelegate::signalThreadsToFlushCaches(MM_EnvironmentBase *currentEnvBase)
{
J9InternalVMFunctions const * const vmFuncs = _javaVM->internalVMFunctions;
J9VMThread *walkThread = NULL;
GC_VMInterface::lockVMThreadList(_extensions);
GC_VMThreadListIterator vmThreadListIterator(_javaVM);
while ((walkThread = vmThreadListIterator.nextVMThread()) != NULL) {
vmFuncs->J9SignalAsyncEvent(_javaVM, walkThread, _flushCachesAsyncCallbackKey);
if (0 == (walkThread->publicFlags & J9_PUBLIC_FLAGS_VM_ACCESS)) {
/* For threads that do not hold VM access, we should not wait, but flush on their behalf right now.
* Hold public mutex to serialize with pair (not to jump in a middle) of reset_VM_access_flag & releaseVMAccessHook,
* that could otherwise have this thread see walk thread as not having VM access but still having active survivor/tenure cache
* and have this thread attempt to clear cache (create remainders, what is a two step non-atomic operation) therefore could race with
* the target thread while trying to activate those caches (consume those remainders). This mutex will not necessarily prevent target
* thread from acquiring mutex fast path, it will just prevent this thread from incorrectly seeing active cache while observing the thread
* not having VM access. This thread will not deal with target thread local resource (clear remainders) unless atomically acquire
* those resources (win inactive cache to push for scanning) */
MM_EnvironmentStandard *walkEnv = MM_EnvironmentStandard::getEnvironment(walkThread->omrVMThread);
omrthread_monitor_enter(walkThread->publicFlagsMutex);
if (0 == (walkThread->publicFlags & J9_PUBLIC_FLAGS_VM_ACCESS)) {
walkEnv->flushGCCaches(false);
}
omrthread_monitor_exit(walkThread->publicFlagsMutex);
}
}
GC_VMInterface::unlockVMThreadList(_extensions);
}
void
MM_ScavengerDelegate::cancelSignalToFlushCaches(MM_EnvironmentBase *env)
{
_javaVM->internalVMFunctions->J9CancelAsyncEvent(_javaVM, NULL, _flushCachesAsyncCallbackKey);
}
#endif /* OMR_GC_CONCURRENT_SCAVENGER */
#if defined(OMR_ENV_DATA64) && defined(OMR_GC_FULL_POINTERS)
void
MM_ScavengerDelegate::poisonSlots(MM_EnvironmentBase *env)
{
((MM_ReadBarrierVerifier *)_extensions->accessBarrier)->poisonSlots(env);
}
void
MM_ScavengerDelegate::healSlots(MM_EnvironmentBase *env)
{
((MM_ReadBarrierVerifier *)_extensions->accessBarrier)->healSlots(env);
}
#endif /* defined(OMR_ENV_DATA64) && defined(OMR_GC_FULL_POINTERS) */
MM_ScavengerDelegate::MM_ScavengerDelegate(MM_EnvironmentBase* env)
: _omrVM(MM_GCExtensions::getExtensions(env)->getOmrVM())
, _javaVM(MM_GCExtensions::getExtensions(env)->getJavaVM())
, _extensions(MM_GCExtensions::getExtensions(env))
, _shouldScavengeFinalizableObjects(false)
, _shouldScavengeUnfinalizedObjects(false)
, _shouldScavengeContinuationObjects(false)
, _shouldIterateContinuationObjects(false)
, _shouldScavengeSoftReferenceObjects(false)
, _shouldScavengeWeakReferenceObjects(false)
, _shouldScavengePhantomReferenceObjects(false)
#if defined(J9VM_GC_FINALIZATION)
, _finalizationRequired(false)
#endif /* J9VM_GC_FINALIZATION */
#if defined(OMR_GC_CONCURRENT_SCAVENGER)
, _flushCachesAsyncCallbackKey(-1)
#endif /* OMR_GC_CONCURRENT_SCAVENGER */
#if defined(OMR_GC_COMPRESSED_POINTERS) && defined(OMR_GC_FULL_POINTERS)
, _compressObjectReferences(env->compressObjectReferences())
#endif /* defined(OMR_GC_COMPRESSED_POINTERS) && defined(OMR_GC_FULL_POINTERS) */
{
_typeId = __FUNCTION__;
}
#endif /* defined(OMR_GC_MODRON_SCAVENGER) */