-
Notifications
You must be signed in to change notification settings - Fork 139
/
Copy pathOMRSimplifierHelpers.cpp
983 lines (884 loc) · 35.9 KB
/
OMRSimplifierHelpers.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
/*******************************************************************************
*
* (c) Copyright IBM Corp. 2000, 2016
*
* This program and the accompanying materials are made available
* under the terms of the Eclipse Public License v1.0 and
* Apache License v2.0 which accompanies this distribution.
*
* The Eclipse Public License is available at
* http://www.eclipse.org/legal/epl-v10.html
*
* The Apache License v2.0 is available at
* http://www.opensource.org/licenses/apache2.0.php
*
* Contributors:
* Multiple authors (IBM Corp.) - initial implementation and documentation
*******************************************************************************/
#include "optimizer/OMRSimplifierHelpers.hpp"
#include "optimizer/Simplifier.hpp"
#include <limits.h>
#include <math.h>
#include "codegen/CodeGenerator.hpp"
#include "codegen/TreeEvaluator.hpp"
#include "compile/Compilation.hpp"
#include "env/CompilerEnv.hpp"
#include "env/IO.hpp" // for POINTER_PRINTF_FORMAT
#include "env/jittypes.h"
#include "il/AliasSetInterface.hpp"
#include "il/DataTypes.hpp" // for getMaxSigned, etc
#include "il/ILOpCodes.hpp"
#include "il/Node.hpp"
#include "il/Node_inlines.hpp"
#include "il/SymbolReference.hpp"
#include "il/TreeTop.hpp"
#include "il/TreeTop_inlines.hpp"
#include "il/Block.hpp"
#include "il/symbol/LabelSymbol.hpp" // for LabelSymbol
#include "infra/Bit.hpp"
#include "infra/BitVector.hpp"
#include "infra/Cfg.hpp"
#include "optimizer/Optimization_inlines.hpp"
#include "optimizer/Optimizer.hpp"
#include "optimizer/Structure.hpp"
#include "optimizer/UseDefInfo.hpp"
#include "optimizer/ValueNumberInfo.hpp"
/*
* Local helper functions
*/
//---------------------------------------------------------------------
// Determine the ordinal value associated with a node. This is used to determine
// the order in which children of a commutative node should be placed.
//
static intptrj_t ordinalValue(TR::Node * node)
{
if (node->getOpCode().hasSymbolReference())
return (intptrj_t)node->getSymbolReference()->getReferenceNumber();
return (intptrj_t)node->getOpCodeValue();
}
//---------------------------------------------------------------------
// Determine the order in which the children of a commutative node should be
// placed. The children of commutative nodes are ordered in a well-defined order
// so that commoning can be done on them.
// Return true if the children should be swapped.
//
static bool shouldSwapChildren(TR::Node * firstChild, TR::Node * secondChild)
{
intptrj_t firstOrdinal = ordinalValue(firstChild);
intptrj_t secondOrdinal = ordinalValue(secondChild);
if (firstOrdinal < secondOrdinal)
return false;
if (firstOrdinal > secondOrdinal)
return true;
if (firstChild->getNumChildren() == 0)
return false;
if (secondChild->getNumChildren() == 0)
return true;
return shouldSwapChildren(firstChild->getFirstChild(), secondChild->getFirstChild());
}
//---------------------------------------------------------------------
// Common routine to swap the children of the node
//
static bool swapChildren(TR::Node * node, TR::Simplifier * s)
{
// NB: although one might be tempted, do not turn this child swap dumpOptDetails into a performTransformation
// because we require that a tree with a constant node have that constant as the second child, unless both
// are constant, so it is not conditional transformation, it is required
dumpOptDetails(s->comp(), "%sSwap children of node [%s] %s\n", s->optDetailString(), node->getName(s->getDebug()), node->getOpCode().getName());
node->swapChildren();
return true;
}
/*
* Helper functions needed by simplifier handlers across projects
*/
// Simplify the children of a node.
//
void simplifyChildren(TR::Node * node, TR::Block * block, TR::Simplifier * s)
{
int32_t i = node->getNumChildren();
if (i == 0)
return;
vcount_t visitCount = s->comp()->getVisitCount();
for (--i; i >= 0; --i)
{
TR::Node * child = node->getChild(i);
child->decFutureUseCount();
if (child->getVisitCount() != visitCount)
{
child = s->simplify(child, block);
node->setChild(i, child);
}
}
}
//**************************************
// Constant folding perform
//
bool performTransformationSimplifier(TR::Node * node, TR::Simplifier * s)
{
return performTransformation(s->comp(), "%sConstant folding node [%s] %s", s->optDetailString(), node->getName(s->getDebug()), node->getOpCode().getName());
}
void setIsHighWordZero(TR::Node * node, TR::Simplifier * s)
{
if (((int32_t)(node->getLongIntHigh() & 0xffffffff) == (int32_t)0) &&
((int64_t)node->getLongInt() >= (int64_t)0))
node->setIsHighWordZero(true);
else
node->setIsHighWordZero(false);
}
TR::Node *_gotoSimplifier(TR::Node * node, TR::Block * block, TR::TreeTop* curTree, TR::Optimization * s)
{
if (branchToFollowingBlock(node, block, s->comp()))
{
if (node->getNumChildren() > 0)
{
TR_ASSERT(node->getFirstChild()->getOpCodeValue() == TR::GlRegDeps, "Expecting TR::GlRegDeps");
// has GlRegDeps(after GRA), can be removed only if BBExit has exaclty the same GlRegDeps
if (block->getExit()->getNode()->getNumChildren() == 0)
return node;
if (!s->optimizer()->areNodesEquivalent(node->getFirstChild(), block->getExit()->getNode()->getFirstChild()))
return node;
}
// Branch to the immediately following block. The goto can be removed
//
if (performTransformation(s->comp(), "%sRemoving goto [" POINTER_PRINTF_FORMAT "] to following block\n", s->optDetailString(), node))
{
s->removeNode(node, curTree);
return NULL;
}
}
return node;
}
void foldIntConstant(TR::Node * node, int32_t value, TR::Simplifier * s, bool anchorChildrenP)
{
if (!performTransformationSimplifier(node, s)) return;
if (anchorChildrenP) s->anchorChildren(node, s->_curTree);
if (node->getOpCode().isRef())
{
static const char *jiagblah = feGetEnv("TR_JIAGTypeAssumes");
if(jiagblah)
TR_ASSERT(0, "Should never foldIntConstant on a reference Node!\n");
s->prepareToReplaceNode(node, TR::aconst);
node->setAddress(value);
dumpOptDetails(s->comp(), " to %s %d\n", node->getOpCode().getName(), node->getAddress());
}
else
{
s->prepareToReplaceNode(node, TR::iconst);
node->setInt(value);
dumpOptDetails(s->comp(), " to %s %d\n", node->getOpCode().getName(), node->getInt());
}
}
void foldUIntConstant(TR::Node * node, uint32_t value, TR::Simplifier * s, bool anchorChildrenP)
{
if (!performTransformationSimplifier(node, s)) return;
if (anchorChildrenP) s->anchorChildren(node, s->_curTree);
s->prepareToReplaceNode(node, TR::iuconst);
node->setUnsignedInt(value);
dumpOptDetails(s->comp(), " to %s %d\n", node->getOpCode().getName(), node->getInt());
}
void foldLongIntConstant(TR::Node * node, int64_t value, TR::Simplifier * s, bool anchorChildrenP)
{
if (!performTransformationSimplifier(node, s)) return;
if (anchorChildrenP) s->anchorChildren(node, s->_curTree);
s->prepareToReplaceNode(node, node->getOpCode().isRef() ? TR::aconst : TR::lconst);
if (node->getOpCode().isRef())
node->setAddress((uintptrj_t)value);
else
node->setLongInt(value);
if (!node->getOpCode().isRef())
setIsHighWordZero(node, s);
dumpOptDetails(s->comp(), " to %s", node->getOpCode().getName());
if (node->getLongIntHigh() == 0)
dumpOptDetails(s->comp(), " 0x%x\n", node->getLongIntLow());
else
dumpOptDetails(s->comp(), " 0x%x%08x\n", node->getLongIntHigh(), node->getLongIntLow());
}
void foldFloatConstant(TR::Node * node, float value, TR::Simplifier * s)
{
if (performTransformationSimplifier(node, s))
{
s->prepareToReplaceNode(node, TR::fconst);
node->setFloat(value);
dumpOptDetails(s->comp(), " to %s %f\n", node->getOpCode().getName(), node->getFloat());
}
}
void foldDoubleConstant(TR::Node * node, double value, TR::Simplifier * s)
{
if (performTransformationSimplifier(node, s))
{
s->prepareToReplaceNode(node, TR::dconst);
node->setDouble(value);
dumpOptDetails(s->comp(), " to %s %f\n", node->getOpCode().getName(), node->getDouble());
}
}
void foldByteConstant(TR::Node * node, int8_t value, TR::Simplifier * s, bool anchorChildrenP)
{
if (!performTransformationSimplifier(node, s)) return;
if (anchorChildrenP) s->anchorChildren(node, s->_curTree);
if (node->getOpCode().isUnsigned())
{
s->prepareToReplaceNode(node, TR::buconst);
node->setUnsignedByte((uint8_t)value);
dumpOptDetails(s->comp(), " to %s %d\n", node->getOpCode().getName(), node->getUnsignedByte());
}
else
{
s->prepareToReplaceNode(node, TR::bconst);
node->setByte(value);
dumpOptDetails(s->comp(), " to %s %d\n", node->getOpCode().getName(), node->getByte());
}
}
void foldShortIntConstant(TR::Node * node, int16_t value, TR::Simplifier * s, bool anchorChildrenP)
{
if (!performTransformationSimplifier(node, s))
return;
if (anchorChildrenP) s->anchorChildren(node, s->_curTree);
s->prepareToReplaceNode(node, TR::sconst);
node->setShortInt(value);
dumpOptDetails(s->comp(), " to %s %d\n", node->getOpCode().getName(), node->getShortInt());
}
bool swapChildren(TR::Node * node, TR::Node * & firstChild, TR::Node * & secondChild, TR::Simplifier * s)
{
if (swapChildren(node, s))
{
firstChild = secondChild;
secondChild = node->getSecondChild();
return true;
}
return false;
}
bool isExprInvariant(TR_RegionStructure *region, TR::Node *node)
{
if (node->getOpCode().isLoadConst())
return true;
if (region)
{
return region->isExprInvariant(node);
}
else
return false;
}
//**************************************
// Normalize a commutative binary tree
//
// If the first child is a constant but the second isn't, swap them.
// Also order the children in a well-defined order for better commoning
//
void orderChildren(TR::Node * node, TR::Node * & firstChild, TR::Node * & secondChild, TR::Simplifier * s)
{
TR_RegionStructure * region;
if (!secondChild->getOpCode().isLoadConst() &&
firstChild->getOpCode().isLoadConst())
{
swapChildren(node, firstChild, secondChild, s);
}
// R2:
else if ((region = s->containingStructure()) &&
!isExprInvariant(region, secondChild) &&
isExprInvariant(region, firstChild))
{
if (performTransformation(s->comp(), "%sApplied reassociation rule 2 to node 0x%p\n", s->optDetailString(), node))
swapChildren(node, firstChild, secondChild, s);
}
// R2:
else if ((region = s->containingStructure()) &&
isExprInvariant(region, secondChild) &&
!isExprInvariant(region, firstChild))
{
// do nothing
}
else if (!secondChild->getOpCode().isLoadConst() &&
shouldSwapChildren(firstChild, secondChild))
{
if (performTransformation(s->comp(), "%sOrdering children of node 0x%p\n", s->optDetailString(), node))
swapChildren(node, firstChild, secondChild, s);
}
}
TR::Node *foldRedundantAND(TR::Node * node, TR::ILOpCodes andOpCode, TR::ILOpCodes constOpCode, int64_t andVal, TR::Simplifier * s)
{
TR::Node * andChild = node->getFirstChild();
if (andChild->getOpCodeValue() != andOpCode)
return 0;
TR::Node * lhsChild = andChild->getFirstChild();
TR::Node * constChild = andChild->getSecondChild();
int64_t val;
if (constChild->getOpCodeValue() == constOpCode)
{
switch(constOpCode)
{
case TR::sconst: case TR::cconst:
val = constChild->getShortInt(); break;
case TR::iconst:
val = constChild->getInt(); break;
case TR::lconst:
val = constChild->getLongInt(); break;
default:
val = 0;
}
}
else
return 0;
if (((val & andVal) == andVal) && (andChild->getReferenceCount() == 1) &&
performTransformation(s->comp(), "%sFolding redundant AND node [%s] and its children [%s, %s]\n",
s->optDetailString(), node->getName(s->getDebug()), lhsChild->getName(s->getDebug()), constChild->getName(s->getDebug())))
{
TR::Node::recreate(andChild, andChild->getFirstChild()->getOpCodeValue());
node->setAndIncChild(0, andChild->getFirstChild());
s->prepareToStopUsingNode(andChild, s->_curTree);
andChild->recursivelyDecReferenceCount();
return node;
}
return 0;
}
/** \brief
* Attempts to fold a logical and operation whose first child is a widening operation and whose second child is a
* constant node such that no bits in the constant node could ever overlap with the bits in the widened value.
*
* \param simplifier
* The simplifier instance used to simplify the trees.
*
* \param node
* The node which to attempt to fold.
*
* \return
* The new folded node if a transformation was performed; NULL otherwise.
*/
TR::Node* tryFoldAndWidened(TR::Simplifier* simplifier, TR::Node* node)
{
if (node->getOpCode().isAnd())
{
TR::Node* rhsNode = node->getChild(1);
if (rhsNode->getOpCode().isLoadConst())
{
TR::Node* lhsNode = node->getChild(0);
// Look for zero extensions or known non-negative sign extensions
if (lhsNode->getOpCode().isZeroExtension() || (lhsNode->getOpCode().isSignExtension() && lhsNode->isNonNegative()))
{
TR::Node* extensionValueNode = lhsNode->getChild(0);
// Sanity check that this is indeed an extension
TR_ASSERT(node->getSize() > extensionValueNode->getSize(), "Extended value datatype size must be smaller than the parent's datatype size.");
// Produce a mask of 1 bits of the same width as the value being extended
int64_t mask = (1ll << (8ll * static_cast<int64_t> (extensionValueNode->getSize()))) - 1ll;
if ((rhsNode->getConstValue() & mask) == 0)
{
if (performTransformation(simplifier->comp(), "%sConstant folding widened and node [%p] to zero\n", simplifier->optDetailString(), node))
{
simplifier->anchorNode(extensionValueNode, simplifier->_curTree);
// This call will recreate the node as well
simplifier->prepareToReplaceNode(node, TR::ILOpCode::constOpCode(node->getDataType()));
node->setConstValue(0);
return node;
}
}
}
}
}
return NULL;
}
//---------------------------------------------------------------------
// Common routine to see if a branch is going immediately to the following block
//
bool branchToFollowingBlock(TR::Node * node, TR::Block * block, TR::Compilation *comp)
{
if (node->getBranchDestination() != block->getExit()->getNextTreeTop())
return false;
// If this is an extended basic block there may be real nodes after the
// conditional branch. In this case the conditional branch must remain.
//
TR::TreeTop * treeTop = block->getLastRealTreeTop();
if (treeTop->getNode() != node)
return false;
return true;
}
// If the first child is a constant but the second isn't, swap them.
//
void makeConstantTheRightChild(TR::Node * node, TR::Node * & firstChild, TR::Node * & secondChild, TR::Simplifier * s)
{
if (firstChild->getOpCode().isLoadConst() &&
!secondChild->getOpCode().isLoadConst())
{
swapChildren(node, firstChild, secondChild, s);
}
}
void makeConstantTheRightChildAndSetOpcode(TR::Node * node, TR::Node * & firstChild, TR::Node * & secondChild, TR::Simplifier * s)
{
if (firstChild->getOpCode().isLoadConst() &&
!secondChild->getOpCode().isLoadConst())
{
TR_ASSERT(node->getOpCode().getOpCodeForSwapChildren() != TR::BadILOp,
"cannot swap children of irreversible op");
if (swapChildren(node, firstChild, secondChild, s))
TR::Node::recreate(node, node->getOpCode().getOpCodeForSwapChildren());
}
}
// replaces an existing child whilst maintaining the ordering information from
// the original, returns the new child
TR::Node *replaceChild(int32_t childIndex, TR::Node* node, TR::Node* newChild, TR::Simplifier* s)
{
TR::Node* oldChild = node->getChild(childIndex);
s->anchorOrderDependentNodesInSubtree(oldChild, newChild, s->_curTree);
node->setAndIncChild(childIndex, newChild);
oldChild->recursivelyDecReferenceCount();
return newChild;
}
TR::Node *postWalkLowerTreeSimplifier(TR::TreeTop *tt, TR::Node *node, TR::Block *block, TR::Simplifier * s)
{
TR::TreeTop * newTree = s->comp()->cg()->lowerTree(node, tt);
if (newTree != s->_curTree)
s->_curTree = newTree = newTree->getPrevTreeTop(); // set it to the previous treetop so simplier will next walk the new tree
return node;
}
void foldFloatConstantEmulate(TR::Node * node, uint32_t value, TR::Simplifier * s)
{
TR_ASSERT(false,"foldFloatConstantEmulate not implemented\n");
return ;
}
void foldDoubleConstantEmulate(TR::Node * node, uint64_t value, TR::Simplifier * s)
{
TR_ASSERT(false,"foldDoubleConstantEmulate not implemented\n");
return ;
}
//---------------------------------------------------------------------
// Check for special values
//
bool isNaNFloat(TR::Node * node)
{
if (!node->getOpCode().isLoadConst())
return false;
uint32_t value = (uint32_t)node->getFloatBits();
return ((value >= FLOAT_NAN_1_LOW && value <= FLOAT_NAN_1_HIGH) ||
(value >= FLOAT_NAN_2_LOW && value <= FLOAT_NAN_2_HIGH));
}
bool isNaNDouble(TR::Node * node)
{
if (!node->getOpCode().isLoadConst())
return false;
uint64_t value = (uint64_t)node->getLongInt();
return IN_DOUBLE_NAN_1_RANGE(value) || IN_DOUBLE_NAN_2_RANGE(value);
}
bool isNZFloatPowerOfTwo(float value)
{
// return true if the float is a non-zero power of two
union {
float f;
int32_t i;
} u;
int32_t float_exp, float_frac;
u.f = value;
float_exp = (u.i >> 23) & 0xff;
float_frac = u.i & 0x7fffff;
if (float_exp != 0 && float_exp != 0xff && float_frac == 0)
return true;
return false;
}
bool isNZDoublePowerOfTwo(double value)
{
// return true if the double is a non-zero power of two
union {
double d;
int64_t i;
} u;
int64_t double_exp, double_frac;
u.d = value;
double_exp = (u.i >> 52) & 0x7ff;
double_frac = u.i & CONSTANT64(0xfffffffffffff);
if (double_exp != 0 && double_exp != 0x7ff && double_frac == 0)
return true;
return false;
}
// Exponentiation operations must be sensitive to the signedness of the exponent (the base signedness does not matter)
// If the exp operation itself is unsigned (for example from pduexp) then the exponent value is interpreted as an unsigned number.
// This matters because otherwise (for example) an 8 bit exponent with the encoding 0xFF would be interpreted as base ** -1
// instead of base ** 255
bool isIntegralExponentInRange(TR::Node *parent, TR::Node *exponent, int64_t maxNegativeExponent, int64_t maxPositiveExponent, TR::Simplifier * s)
{
TR_ASSERT(exponent->getType().isIntegral(),"isIntegralExponentInRange only valid for integral exponents and not type %s\n",exponent->getDataType().toString());
TR_ASSERT(parent->getOpCode().isExponentiation(),"isIntegralExponentInRange only valid for exponentiation operations\n");
bool exponentInRange = false;
bool isUnsignedExpOp = parent->getOpCode().isUnsignedExponentiation();
if (exponent->getType().isIntegral())
{
if (isUnsignedExpOp)
{
uint64_t unsignedExponentValue = exponent->get64bitIntegralValueAsUnsigned();
if (unsignedExponentValue <= (uint64_t) maxPositiveExponent)
{
exponentInRange = true;
}
}
else
{
int64_t signedExponentValue = exponent->get64bitIntegralValue();
if (signedExponentValue >= maxNegativeExponent &&
signedExponentValue <= maxPositiveExponent)
{
exponentInRange = true;
}
}
}
return exponentInRange;
}
TR::Node *reduceExpTwoAndGreaterToMultiplication(int32_t exponentValue, TR::Node *baseNode, TR::ILOpCodes multOp, TR::Block *block, TR::Simplifier *s, int32_t maxExponent)
{
if (exponentValue <= 1)
{
TR_ASSERT(false,"reduceExpTwoAndGreaterToMultiplication only valid for values >= 2 and not value=%d\n", exponentValue);
return NULL;
}
TR::Node *resultNode = NULL;
// There are two algorithms here -- they are equivalent in the number
// of multiply operations however the second is better for platforms
// that have a destructive multiply instruction as less clobber evaluates
// will be required. The second has the advantage that more parallel
// multiply operations are created
if (s->comp()->cg()->multiplyIsDestructive())
{
int32_t bitPosOfLeftMostOne = 32 - leadingZeroes(exponentValue) - 1; // bitPos=0 is the least significant bit so for exponentValue=7 : 32 - 29 - 1 = 2
resultNode = baseNode;
if (bitPosOfLeftMostOne != 0)
{
for (int32_t i = bitPosOfLeftMostOne-1; i >= 0; i--)
{
resultNode = TR::Node::create(multOp, 2, resultNode, resultNode);
dumpOptDetails(s->comp(), "%screated %s [" POINTER_PRINTF_FORMAT "] operation for exponentiation strength reduction (algorithmA/caseA)\n",
s->optDetailString(), resultNode->getOpCode().getName(), resultNode);
if (((exponentValue >> i)&0x1) != 0)
{
resultNode = TR::Node::create(multOp, 2, resultNode, baseNode);
dumpOptDetails(s->comp(), "%screated %s [" POINTER_PRINTF_FORMAT "] operation for exponentiation strength reduction (algorithmA/caseB)\n",
s->optDetailString(), resultNode->getOpCode().getName(), resultNode);
}
}
}
}
else
{
int32_t maxCeiling = ceilingPowerOfTwo(maxExponent); // if maxExponent=31 then maxCeiling = 32
int32_t maxCeilingExp = trailingZeroes(maxCeiling); // (2^x=maxCeiling) so if maxCeiling = 32 then x=maxCeilingExp=5
TR::Node **subTrees = (TR::Node**)s->comp()->trMemory()->allocateStackMemory((maxCeilingExp+1)*sizeof(TR::Node*));
subTrees[0] = baseNode;
int32_t i = 0;
for (i = 1; exponentValue >= (CONSTANT64(1) << i); ++i) // i can reach maxCeilingExp+1
{
int32_t j = i-1;
resultNode = subTrees[i] = TR::Node::create(multOp, 2, subTrees[j], subTrees[j]);
dumpOptDetails(s->comp(), "%screated %s [" POINTER_PRINTF_FORMAT "] operation for exponentiation strength reduction (algorithmB/caseA)\n",
s->optDetailString(), resultNode->getOpCode().getName(), resultNode);
}
int32_t j = -1;
uint32_t mask = 1;
for (i=0; i < maxCeilingExp; ++i)
{
if (exponentValue & (mask << i))
{
if (j !=-1)
{
resultNode = TR::Node::create(multOp, 2, subTrees[i], subTrees[j]);
subTrees[i] = resultNode;
dumpOptDetails(s->comp(), "%screated %s [" POINTER_PRINTF_FORMAT "] operation for exponentiation strength reduction (algorithmB/caseA))\n",
s->optDetailString(), resultNode->getOpCode().getName(), resultNode);
}
j = i;
}
}
}
TR_ASSERT(resultNode != NULL, "resultNode should not be NULL\n");
TR::NodeChecklist visited(s->comp());
s->setNodePrecisionIfNeeded(baseNode, resultNode, visited);
return resultNode;
}
TR::Node *replaceExpWithMult(TR::Node *node,TR::Node *valueNode,TR::Node *exponentNode,TR::Block *block,TR::Simplifier *s)
{
static bool skipit=(NULL!=feGetEnv("TR_SKIP_EXP_REPLACEMENT"));
if (skipit) return node;
const int64_t kMaxPositiveExponent = 32;
// negative power inlining generates the divide 1/pow(base,abs(exponent)) so if base==0 then there are
// fe/language specific rules on what the result/behaviour will be (e.g. Inf, hardware expection).
// The current expansion below generates the divide ignorant of any of these rules so it cannot be enabled globally.
const int64_t kMaxNegativeExponent = 0;
if (exponentNode->getOpCode().isLoadConst() &&
kMaxPositiveExponent >= 0 && kMaxPositiveExponent <= TR::getMaxSigned<TR::Int32>() &&
kMaxNegativeExponent >= TR::getMinSigned<TR::Int32>() && kMaxNegativeExponent <= 0)
{
bool isPowAndReasonableIntExponent=false;
bool isUnsignedExpOp = node->getOpCode().isUnsignedExponentiation();
int64_t powExponent=-1;
TR::ILOpCodes multiplyOp = TR::BadILOp;
TR::ILOpCodes divideOp = TR::BadILOp;
switch(node->getOpCodeValue())
{
// update exponent==0 case below when adding new TR_exp nodes
case TR::iexp:
case TR::lexp:
case TR::fexp: // only integer exponents currently handled for fexp
{
multiplyOp = TR::ILOpCode::multiplyOpCode(node->getDataType());
divideOp = TR::ILOpCode::divideOpCode(node->getDataType());
if (exponentNode->getType().isIntegral())
{
isPowAndReasonableIntExponent = isIntegralExponentInRange(node, exponentNode, kMaxNegativeExponent, kMaxPositiveExponent, s);
if (isUnsignedExpOp)
powExponent = (int64_t)exponentNode->get64bitIntegralValueAsUnsigned();
else
powExponent = exponentNode->get64bitIntegralValue();
}
break;
}
case TR::dexp:
case TR::dcall: // Math.pow(D)
{
multiplyOp = TR::dmul;
divideOp = TR::ddiv;
if (exponentNode->getType().isIntegral())
{
isPowAndReasonableIntExponent = isIntegralExponentInRange(node, exponentNode, kMaxNegativeExponent, kMaxPositiveExponent, s);
if (isUnsignedExpOp)
powExponent = (int64_t)exponentNode->get64bitIntegralValueAsUnsigned();
else
powExponent = exponentNode->get64bitIntegralValue();
}
else
{
double exponentValue = exponentNode->getDouble();
if (isNaNDouble(exponentNode) &&
performTransformation(s->comp(), "%sReplacing Math.pow(X,NaN) call with dconst NaN [%p]\n",
s->optDetailString(), node))
{
s->prepareToReplaceNode(node,TR::dconst);
node->setLongInt(exponentNode->getLongInt());
return node;
}
if (exponentValue >= kMaxNegativeExponent &&
exponentValue <= kMaxPositiveExponent)
{
// ensure it's not fractional
double roundedValue = (double)((int64_t) exponentValue);
if(roundedValue == exponentValue)
{
isPowAndReasonableIntExponent = true;
powExponent = (int64_t)exponentValue;
}
}
}
}
break;
default:
isPowAndReasonableIntExponent = false;
}
if (isPowAndReasonableIntExponent &&
performTransformation(s->comp(), "%sStrength reduce %s [" POINTER_PRINTF_FORMAT "] with power = %d to a series of multiplications\n",
s->optDetailString(), node->getOpCode().getName(), node, (int32_t)powExponent))
{
TR::Node *origNode = node;
bool isExponentNegative = powExponent < 0;
int32_t absPowExponent = (int32_t)(isExponentNegative ? -powExponent : powExponent);
if (0 == absPowExponent)
{
switch (node->getDataType())
{
case TR::Int32:
{
s->prepareToReplaceNode(node, TR::iconst);
node->setInt(1);
break;
}
case TR::Int64:
{
s->prepareToReplaceNode(node, TR::lconst);
node->setLongInt(1);
break;
}
case TR::Float:
{
s->prepareToReplaceNode(node, TR::fconst);
node->setFloatBits(FLOAT_ONE);
break;
}
case TR::Double:
{
s->prepareToReplaceNode(node, TR::dconst);
node->setUnsignedLongInt(DOUBLE_ONE);
break;
}
default:
{
TR_ASSERT(false,"unexpected exponent datatype %s\n",node->getDataType().toString());
}
}
return node;
}
else if (1 == absPowExponent)
{
if (isExponentNegative)
{
valueNode->incReferenceCount(); // keep node alive across prepareToReplaceNode call
s->prepareToReplaceNode(origNode, divideOp);
origNode->setNumChildren(2);
origNode->setAndIncChild(0, TR::Node::createConstOne(node, node->getDataType()));
origNode->setChild(1, valueNode);
node = origNode;
}
else
{
return s->replaceNode(origNode, valueNode, s->_curTree);
}
}
else
{
TR_ASSERT(kMaxPositiveExponent >= 0 && kMaxPositiveExponent <= TR::getMaxSigned<TR::Int32>(),"kMaxPositiveExponent should not exceed integer limits\n"); // checked above
TR_ASSERT(kMaxNegativeExponent >= TR::getMinSigned<TR::Int32>() && kMaxNegativeExponent <= 0,"kMaxNegativeExponent should not exceed integer limits\n"); // checked above
TR_ASSERT(absPowExponent >= TR::getMinSigned<TR::Int32>() && absPowExponent <= TR::getMaxSigned<TR::Int32>(),"exponent should not exceed integer limits\n"); // checked above
int32_t maxExponent = isExponentNegative ? (int32_t)kMaxNegativeExponent : (int32_t)kMaxPositiveExponent;
node = reduceExpTwoAndGreaterToMultiplication(absPowExponent, valueNode, multiplyOp, block, s, maxExponent);
// substitute origNode with node in-place to preserve commoning
if (isExponentNegative)
{
s->prepareToReplaceNode(origNode, divideOp);
origNode->setNumChildren(2);
origNode->setAndIncChild(0, TR::Node::createConstOne(node, node->getDataType()));
origNode->setAndIncChild(1, node);
node = origNode;
}
else
{
s->prepareToReplaceNode(origNode, multiplyOp);
origNode->setNumChildren(2);
origNode->setChild(0, node->getChild(0));
origNode->setChild(1, node->getChild(1));
node = origNode;
}
}
}
}
return node;
}
// NOTE: This function only (and should only) decodes opcodes found in conversionMap table!!!
bool decodeConversionOpcode(TR::ILOpCode op, TR::DataType nodeDataType, TR::DataType &sourceDataType, TR::DataType &targetDataType)
{
if (!op.isConversion())
{
return false;
}
else
{
targetDataType = nodeDataType;
TR::ILOpCodes opValue = op.getOpCodeValue();
for (int i = 0; i < TR::NumTypes; i++)
{
sourceDataType = (TR::DataTypes)i;
if (opValue == TR::ILOpCode::getProperConversion(sourceDataType, targetDataType, false /*!wantZeroExtension*/))
{
return true;
}
}
return false;
}
}
int32_t floatToInt(float value, bool roundUp)
{
int32_t pattern = *(int32_t *)&value;
int32_t result;
if ((pattern & 0x7f800000)==0x7f800000 && (pattern & 0x007fffff)!=0)
result = 0; // This is a NaN value
else if (value <= TR::getMinSigned<TR::Int32>())
result = TR::getMinSigned<TR::Int32>();
else if (value >= TR::getMaxSigned<TR::Int32>())
result = TR::getMaxSigned<TR::Int32>();
else
{
if (roundUp)
if (value > 0)
value += 0.5;
else
value -= 0.5;
result = (int32_t)value;
}
return result;
}
int32_t doubleToInt(double value, bool roundUp)
{
int64_t pattern = *(int64_t *)&value;
int32_t result;
if ((pattern & DOUBLE_ORDER(CONSTANT64(0x7ff0000000000000))) == DOUBLE_ORDER(CONSTANT64(0x7ff0000000000000)) &&
(pattern & DOUBLE_ORDER(CONSTANT64(0x000fffffffffffff))) != 0)
result = 0; // This is a NaN value
else if (value <= TR::getMinSigned<TR::Int32>())
result = TR::getMinSigned<TR::Int32>();
else if (value >= TR::getMaxSigned<TR::Int32>())
result = TR::getMaxSigned<TR::Int32>();
else
{
if (roundUp)
if (value > 0)
value += 0.5;
else
value -= 0.5;
result = (int32_t)value;
}
return result;
}
void removePaddingNode(TR::Node *node, TR::Simplifier *s)
{
TR::Node *paddingNode = NULL;
if (paddingNode)
{
if (!paddingNode->safeToDoRecursiveDecrement())
s->anchorNode(paddingNode, s->_curTree);
paddingNode->recursivelyDecReferenceCount();
int32_t oldNumChildren = node->getNumChildren();
node->setNumChildren(oldNumChildren-1);
dumpOptDetails(s->comp(),"remove paddingNode %s (0x%p) from %s (0x%p) and dec numChildren %d->%d\n",
paddingNode->getOpCode().getName(),paddingNode,node->getOpCode().getName(),node,oldNumChildren,oldNumChildren-1);
}
}
// the usual behaviour is to remove the padding node except in cases where the caller is already dealing with this
void stopUsingSingleNode(TR::Node *node, bool removePadding, TR::Simplifier *s)
{
TR_ASSERT(node->getReferenceCount() == 1, "stopUsingSingleNode only valid for nodes with a referenceCount of 1 and not %d\n",
node->getReferenceCount());
if (removePadding)
removePaddingNode(node, s);
if (node->getReferenceCount() <= 1)
{
if (s->optimizer()->prepareForNodeRemoval(node, /* deferInvalidatingUseDefInfo = */ true))
s->_invalidateUseDefInfo = true;
s->_alteredBlock = true;
}
node->decReferenceCount();
if (node->getReferenceCount() > 0)
node->setVisitCount(0);
}
TR::TreeTop *findTreeTop(TR::Node * callNode, TR::Block * block)
{
// Walk the extended block to find this node - has to be child of store or tree-top
TR::Block * b = block->startOfExtendedBlock();
if (!b)
return NULL;
do
{
for (TR::TreeTop* tt = b->getEntry(); tt != b->getExit(); tt = tt->getNextRealTreeTop())
{
if (tt->getNode()->getNumChildren() == 1 && tt->getNode()->getFirstChild() == callNode)
{
return tt;
}
}
b = b->getNextBlock();
} while (b && b->isExtensionOfPreviousBlock());
return NULL;
}
TR::Node *removeIfToFollowingBlock(TR::Node * node, TR::Block * block, TR::Simplifier * s)
{
if (branchToFollowingBlock(node, block, s->comp()))
{
// Branch to the immediately following block. The branch can be removed
//
if (performTransformation(s->comp(), "%sRemoving %s [" POINTER_PRINTF_FORMAT "] to following block\n", s->optDetailString(), node->getOpCode().getName(), node))
{
s->prepareToStopUsingNode(node, s->_curTree);
node->recursivelyDecReferenceCount();
return NULL;
}
}
return node;
}