Skip to content

Files

Latest commit

c29b144 · May 17, 2024

History

History

0912.Sort an Array

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
May 17, 2024
May 17, 2024
Jan 26, 2023
Jan 29, 2023
Jan 26, 2023
Jan 29, 2023
Jan 26, 2023
Jan 29, 2023
Jan 13, 2024
Jan 13, 2024
Jan 13, 2024
Jan 13, 2024
Jan 13, 2024
Jan 13, 2024
Jan 13, 2024
comments difficulty edit_url tags
true
中等
数组
分治
桶排序
计数排序
基数排序
排序
堆(优先队列)
归并排序

English Version

题目描述

给你一个整数数组 nums,请你将该数组升序排列。

 

示例 1:

输入:nums = [5,2,3,1]
输出:[1,2,3,5]

示例 2:

输入:nums = [5,1,1,2,0,0]
输出:[0,0,1,1,2,5]

 

提示:

  • 1 <= nums.length <= 5 * 104
  • -5 * 104 <= nums[i] <= 5 * 104

解法

方法一:快速排序

快速排序是一种高效的排序算法。它的基本思想是通过一趟排序将待排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

时间复杂度 O ( n × log n ) ,空间复杂度 O ( log n ) 。其中 n 为数组长度。

Python3

class Solution:
    def sortArray(self, nums: List[int]) -> List[int]:
        def quick_sort(l, r):
            if l >= r:
                return
            x = nums[randint(l, r)]
            i, j, k = l - 1, r + 1, l
            while k < j:
                if nums[k] < x:
                    nums[i + 1], nums[k] = nums[k], nums[i + 1]
                    i, k = i + 1, k + 1
                elif nums[k] > x:
                    j -= 1
                    nums[j], nums[k] = nums[k], nums[j]
                else:
                    k = k + 1
            quick_sort(l, i)
            quick_sort(j, r)

        quick_sort(0, len(nums) - 1)
        return nums

Java

class Solution {
    private int[] nums;

    public int[] sortArray(int[] nums) {
        this.nums = nums;
        quikcSort(0, nums.length - 1);
        return nums;
    }

    private void quikcSort(int l, int r) {
        if (l >= r) {
            return;
        }
        int x = nums[(l + r) >> 1];
        int i = l - 1, j = r + 1;
        while (i < j) {
            while (nums[++i] < x) {
            }
            while (nums[--j] > x) {
            }
            if (i < j) {
                int t = nums[i];
                nums[i] = nums[j];
                nums[j] = t;
            }
        }
        quikcSort(l, j);
        quikcSort(j + 1, r);
    }
}

C++

class Solution {
public:
    vector<int> sortArray(vector<int>& nums) {
        function<void(int, int)> quick_sort = [&](int l, int r) {
            if (l >= r) {
                return;
            }
            int i = l - 1, j = r + 1;
            int x = nums[(l + r) >> 1];
            while (i < j) {
                while (nums[++i] < x) {
                }
                while (nums[--j] > x) {
                }
                if (i < j) {
                    swap(nums[i], nums[j]);
                }
            }
            quick_sort(l, j);
            quick_sort(j + 1, r);
        };
        quick_sort(0, nums.size() - 1);
        return nums;
    }
};

Go

func sortArray(nums []int) []int {
	quickSort(nums, 0, len(nums)-1)
	return nums
}

func quickSort(nums []int, l, r int) {
	if l >= r {
		return
	}
	i, j := l-1, r+1
	x := nums[(l+r)>>1]
	for i < j {
		for {
			i++
			if nums[i] >= x {
				break
			}
		}
		for {
			j--
			if nums[j] <= x {
				break
			}
		}
		if i < j {
			nums[i], nums[j] = nums[j], nums[i]
		}
	}
	quickSort(nums, l, j)
	quickSort(nums, j+1, r)
}

TypeScript

function sortArray(nums: number[]): number[] {
    function quickSort(l: number, r: number) {
        if (l >= r) {
            return;
        }
        let i = l - 1;
        let j = r + 1;
        const x = nums[(l + r) >> 1];
        while (i < j) {
            while (nums[++i] < x);
            while (nums[--j] > x);
            if (i < j) {
                [nums[i], nums[j]] = [nums[j], nums[i]];
            }
        }
        quickSort(l, j);
        quickSort(j + 1, r);
    }
    const n = nums.length;
    quickSort(0, n - 1);
    return nums;
}

JavaScript

/**
 * @param {number[]} nums
 * @return {number[]}
 */
var sortArray = function (nums) {
    function quickSort(l, r) {
        if (l >= r) {
            return;
        }
        let i = l - 1;
        let j = r + 1;
        const x = nums[(l + r) >> 1];
        while (i < j) {
            while (nums[++i] < x);
            while (nums[--j] > x);
            if (i < j) {
                [nums[i], nums[j]] = [nums[j], nums[i]];
            }
        }
        quickSort(l, j);
        quickSort(j + 1, r);
    }
    const n = nums.length;
    quickSort(0, n - 1);
    return nums;
};

方法二:归并排序

归并排序是一种分治算法,其思想是将待排序的数据序列不断地折半拆分,直到每个数据块只有一个元素为止,然后再按照拆分的顺序将每个数据块两两合并,在合并的过程中进行排序,最终得到一个有序的数据序列。

归并排序是一种稳定的排序算法,时间复杂度为 O ( n × log n ) ,空间复杂度为 O ( n ) 。其中 n 为数组长度。

Python3

class Solution:
    def sortArray(self, nums: List[int]) -> List[int]:
        def merge_sort(l, r):
            if l >= r:
                return
            mid = (l + r) >> 1
            merge_sort(l, mid)
            merge_sort(mid + 1, r)
            i, j = l, mid + 1
            tmp = []
            while i <= mid and j <= r:
                if nums[i] <= nums[j]:
                    tmp.append(nums[i])
                    i += 1
                else:
                    tmp.append(nums[j])
                    j += 1
            if i <= mid:
                tmp.extend(nums[i : mid + 1])
            if j <= r:
                tmp.extend(nums[j : r + 1])
            for i in range(l, r + 1):
                nums[i] = tmp[i - l]

        merge_sort(0, len(nums) - 1)
        return nums

Java

class Solution {
    private int[] nums;

    public int[] sortArray(int[] nums) {
        this.nums = nums;
        quickSort(0, nums.length - 1);
        return nums;
    }

    private void quickSort(int l, int r) {
        if (l >= r) {
            return;
        }
        int i = l - 1, j = r + 1, k = l;
        int x = nums[(l + r) >> 1];
        while (k < j) {
            if (nums[k] < x) {
                swap(++i, k++);
            } else if (nums[k] > x) {
                swap(--j, k);
            } else {
                ++k;
            }
        }
        quickSort(l, i);
        quickSort(j, r);
    }

    private void swap(int i, int j) {
        int t = nums[i];
        nums[i] = nums[j];
        nums[j] = t;
    }
}

C++

class Solution {
public:
    vector<int> sortArray(vector<int>& nums) {
        function<void(int, int)> merge_sort = [&](int l, int r) {
            if (l >= r) {
                return;
            }
            int mid = (l + r) >> 1;
            merge_sort(l, mid);
            merge_sort(mid + 1, r);
            int i = l, j = mid + 1, k = 0;
            int tmp[r - l + 1];
            while (i <= mid && j <= r) {
                if (nums[i] <= nums[j]) {
                    tmp[k++] = nums[i++];
                } else {
                    tmp[k++] = nums[j++];
                }
            }
            while (i <= mid) {
                tmp[k++] = nums[i++];
            }
            while (j <= r) {
                tmp[k++] = nums[j++];
            }
            for (i = l; i <= r; ++i) {
                nums[i] = tmp[i - l];
            }
        };
        merge_sort(0, nums.size() - 1);
        return nums;
    }
};

Go

func sortArray(nums []int) []int {
	mergeSort(nums, 0, len(nums)-1)
	return nums
}

func mergeSort(nums []int, l, r int) {
	if l >= r {
		return
	}
	mid := (l + r) >> 1
	mergeSort(nums, l, mid)
	mergeSort(nums, mid+1, r)
	i, j, k := l, mid+1, 0
	tmp := make([]int, r-l+1)
	for i <= mid && j <= r {
		if nums[i] <= nums[j] {
			tmp[k] = nums[i]
			i++
		} else {
			tmp[k] = nums[j]
			j++
		}
		k++
	}
	for ; i <= mid; i++ {
		tmp[k] = nums[i]
		k++
	}
	for ; j <= r; j++ {
		tmp[k] = nums[j]
		k++
	}
	for i = l; i <= r; i++ {
		nums[i] = tmp[i-l]
	}
}

TypeScript

function sortArray(nums: number[]): number[] {
    function mergetSort(l: number, r: number) {
        if (l >= r) {
            return;
        }
        const mid = (l + r) >> 1;
        mergetSort(l, mid);
        mergetSort(mid + 1, r);
        let [i, j, k] = [l, mid + 1, 0];
        while (i <= mid && j <= r) {
            if (nums[i] <= nums[j]) {
                tmp[k++] = nums[i++];
            } else {
                tmp[k++] = nums[j++];
            }
        }
        while (i <= mid) {
            tmp[k++] = nums[i++];
        }
        while (j <= r) {
            tmp[k++] = nums[j++];
        }
        for (i = l, j = 0; i <= r; ++i, ++j) {
            nums[i] = tmp[j];
        }
    }
    const n = nums.length;
    let tmp = new Array(n).fill(0);
    mergetSort(0, n - 1);
    return nums;
}

JavaScript

/**
 * @param {number[]} nums
 * @return {number[]}
 */
var sortArray = function (nums) {
    function mergetSort(l, r) {
        if (l >= r) {
            return;
        }
        const mid = (l + r) >> 1;
        mergetSort(l, mid);
        mergetSort(mid + 1, r);
        let [i, j, k] = [l, mid + 1, 0];
        while (i <= mid && j <= r) {
            if (nums[i] <= nums[j]) {
                tmp[k++] = nums[i++];
            } else {
                tmp[k++] = nums[j++];
            }
        }
        while (i <= mid) {
            tmp[k++] = nums[i++];
        }
        while (j <= r) {
            tmp[k++] = nums[j++];
        }
        for (i = l, j = 0; i <= r; ++i, ++j) {
            nums[i] = tmp[j];
        }
    }
    const n = nums.length;
    let tmp = new Array(n).fill(0);
    mergetSort(0, n - 1);
    return nums;
};

方法三

Java

class Solution {
    private int[] nums;

    public int[] sortArray(int[] nums) {
        this.nums = nums;
        mergeSort(0, nums.length - 1);
        return nums;
    }

    private void mergeSort(int l, int r) {
        if (l >= r) {
            return;
        }
        int mid = (l + r) >> 1;
        mergeSort(l, mid);
        mergeSort(mid + 1, r);
        int i = l, j = mid + 1, k = 0;
        int[] tmp = new int[r - l + 1];
        while (i <= mid && j <= r) {
            if (nums[i] <= nums[j]) {
                tmp[k++] = nums[i++];
            } else {
                tmp[k++] = nums[j++];
            }
        }
        while (i <= mid) {
            tmp[k++] = nums[i++];
        }
        while (j <= r) {
            tmp[k++] = nums[j++];
        }
        for (i = l; i <= r; ++i) {
            nums[i] = tmp[i - l];
        }
    }
}