给你一个正整数 p
。你有一个下标从 1 开始的数组 nums
,这个数组包含范围 [1, 2p - 1]
内所有整数的二进制形式(两端都 包含)。你可以进行以下操作 任意 次:
- 从
nums
中选择两个元素x
和y
。 - 选择
x
中的一位与y
对应位置的位交换。对应位置指的是两个整数 相同位置 的二进制位。
比方说,如果 x = 1101
且 y = 0011
,交换右边数起第 2
位后,我们得到 x = 1111
和 y = 0001
。
请你算出进行以上操作 任意次 以后,nums
能得到的 最小非零 乘积。将乘积对 109 + 7
取余 后返回。
注意:答案应为取余 之前 的最小值。
示例 1:
输入:p = 1 输出:1 解释:nums = [1] 。 只有一个元素,所以乘积为该元素。
示例 2:
输入:p = 2 输出:6 解释:nums = [01, 10, 11] 。 所有交换要么使乘积变为 0 ,要么乘积与初始乘积相同。 所以,数组乘积 1 * 2 * 3 = 6 已经是最小值。
示例 3:
输入:p = 3 输出:1512 解释:nums = [001, 010, 011, 100, 101, 110, 111] - 第一次操作中,我们交换第二个和第五个元素最左边的数位。 - 结果数组为 [001, 110, 011, 100, 001, 110, 111] 。 - 第二次操作中,我们交换第三个和第四个元素中间的数位。 - 结果数组为 [001, 110, 001, 110, 001, 110, 111] 。 数组乘积 1 * 6 * 1 * 6 * 1 * 6 * 7 = 1512 是最小乘积。
提示:
1 <= p <= 60
方法一:贪心 + 快速幂
我们注意到,每一次操作,并不会改变元素的和,而在元素和不变的情况下,要想使得乘积最小,应该尽可能最大化元素的差值。
由于最大的元素为
对于其它的
时间复杂度
class Solution:
def minNonZeroProduct(self, p: int) -> int:
mod = 10**9 + 7
return (2**p - 1) * pow(2**p - 2, 2 ** (p - 1) - 1, mod) % mod
class Solution {
public int minNonZeroProduct(int p) {
final int mod = (int) 1e9 + 7;
long a = ((1L << p) - 1) % mod;
long b = qmi(((1L << p) - 2) % mod, (1L << (p - 1)) - 1, mod);
return (int) (a * b % mod);
}
long qmi(long a, long k, long p) {
long res = 1;
while (k != 0) {
if ((k & 1) == 1) {
res = res * a % p;
}
k >>= 1;
a = a * a % p;
}
return res;
}
}
class Solution {
public:
int minNonZeroProduct(int p) {
const int mod = 1e9 + 7;
long long a = ((1LL << p) - 1) % mod;
long long b = qmi(((1LL << p) - 2) % mod, (1L << (p - 1)) - 1, mod);
return a * b % mod;
}
long long qmi(long long a, long long k, int p) {
long long res = 1;
while (k != 0) {
if ((k & 1) == 1) {
res = res * a % p;
}
k >>= 1;
a = a * a % p;
}
return res;
}
};
func minNonZeroProduct(p int) int {
const mod int = 1e9 + 7
a := ((1 << p) - 1) % mod
b := qmi(((1<<p)-2)%mod, (1<<(p-1))-1, mod)
return a * b % mod
}
func qmi(a, k, p int) int {
res := 1
for k != 0 {
if k&1 == 1 {
res = res * a % p
}
k >>= 1
a = a * a % p
}
return res
}