Skip to content

Files

Latest commit

c28dbd6 · Jun 21, 2024

History

History

0637.Average of Levels in Binary Tree

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Apr 22, 2021
Jun 21, 2024
Jun 21, 2024
Jun 18, 2024
Aug 27, 2022
Aug 27, 2022
Jun 18, 2024
Aug 27, 2022
Jun 21, 2024
Jan 13, 2024
Jan 13, 2024
Jan 13, 2024
Jun 18, 2024
Jan 13, 2024
comments difficulty edit_url tags
true
简单
深度优先搜索
广度优先搜索
二叉树

English Version

题目描述

给定一个非空二叉树的根节点 root , 以数组的形式返回每一层节点的平均值。与实际答案相差 10-5 以内的答案可以被接受。

 

示例 1:

输入:root = [3,9,20,null,null,15,7]
输出:[3.00000,14.50000,11.00000]
解释:第 0 层的平均值为 3,第 1 层的平均值为 14.5,第 2 层的平均值为 11 。
因此返回 [3, 14.5, 11] 。

示例 2:

输入:root = [3,9,20,15,7]
输出:[3.00000,14.50000,11.00000]

 

提示:

  • 树中节点数量在 [1, 104] 范围内
  • -231 <= Node.val <= 231 - 1

解法

方法一:BFS

我们可以使用广度优先搜索的方法,遍历每一层的节点,计算每一层的平均值。

具体地,我们定义一个队列 q ,初始时将根节点加入队列。每次将队列中的所有节点取出,计算这些节点的平均值,加入答案数组中,并将这些节点的子节点加入队列。重复这一过程,直到队列为空。

时间复杂度 O ( n ) ,空间复杂度 O ( n ) 。其中 n 是二叉树的节点个数。

Python3

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def averageOfLevels(self, root: Optional[TreeNode]) -> List[float]:
        q = deque([root])
        ans = []
        while q:
            s, n = 0, len(q)
            for _ in range(n):
                root = q.popleft()
                s += root.val
                if root.left:
                    q.append(root.left)
                if root.right:
                    q.append(root.right)
            ans.append(s / n)
        return ans

Java

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<Double> averageOfLevels(TreeNode root) {
        List<Double> ans = new ArrayList<>();
        Deque<TreeNode> q = new ArrayDeque<>();
        q.offer(root);
        while (!q.isEmpty()) {
            int n = q.size();
            long s = 0;
            for (int i = 0; i < n; ++i) {
                root = q.pollFirst();
                s += root.val;
                if (root.left != null) {
                    q.offer(root.left);
                }
                if (root.right != null) {
                    q.offer(root.right);
                }
            }
            ans.add(s * 1.0 / n);
        }
        return ans;
    }
}

C++

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    vector<double> averageOfLevels(TreeNode* root) {
        queue<TreeNode*> q{{root}};
        vector<double> ans;
        while (!q.empty()) {
            int n = q.size();
            long long s = 0;
            for (int i = 0; i < n; ++i) {
                root = q.front();
                q.pop();
                s += root->val;
                if (root->left) {
                    q.push(root->left);
                }
                if (root->right) {
                    q.push(root->right);
                }
            }
            ans.push_back(s * 1.0 / n);
        }
        return ans;
    }
};

Go

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func averageOfLevels(root *TreeNode) []float64 {
	q := []*TreeNode{root}
	ans := []float64{}
	for len(q) > 0 {
		n := len(q)
		s := 0
		for i := 0; i < n; i++ {
			root = q[0]
			q = q[1:]
			s += root.Val
			if root.Left != nil {
				q = append(q, root.Left)
			}
			if root.Right != nil {
				q = append(q, root.Right)
			}
		}
		ans = append(ans, float64(s)/float64(n))
	}
	return ans
}

Rust

// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
//   pub val: i32,
//   pub left: Option<Rc<RefCell<TreeNode>>>,
//   pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
//   #[inline]
//   pub fn new(val: i32) -> Self {
//     TreeNode {
//       val,
//       left: None,
//       right: None
//     }
//   }
// }
use std::cell::RefCell;
use std::collections::VecDeque;
use std::rc::Rc;

impl Solution {
    pub fn average_of_levels(root: Option<Rc<RefCell<TreeNode>>>) -> Vec<f64> {
        let mut ans = vec![];
        let mut q = VecDeque::new();
        if let Some(root_node) = root {
            q.push_back(root_node);
        }
        while !q.is_empty() {
            let n = q.len();
            let mut s: i64 = 0;
            for _ in 0..n {
                if let Some(node) = q.pop_front() {
                    let node_borrow = node.borrow();
                    s += node_borrow.val as i64;
                    if let Some(left) = node_borrow.left.clone() {
                        q.push_back(left);
                    }
                    if let Some(right) = node_borrow.right.clone() {
                        q.push_back(right);
                    }
                }
            }
            ans.push((s as f64) / (n as f64));
        }
        ans
    }
}

JavaScript

/**
 * Definition for a binary tree node.
 * function TreeNode(val, left, right) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.left = (left===undefined ? null : left)
 *     this.right = (right===undefined ? null : right)
 * }
 */
/**
 * @param {TreeNode} root
 * @return {number[]}
 */
var averageOfLevels = function (root) {
    const q = [root];
    const ans = [];
    while (q.length) {
        const n = q.length;
        const nq = [];
        let s = 0;
        for (const { val, left, right } of q) {
            s += val;
            left && nq.push(left);
            right && nq.push(right);
        }
        ans.push(s / n);
        q.splice(0, q.length, ...nq);
    }
    return ans;
};

方法二:DFS

我们也可以使用深度优先搜索的方法,来计算每一层的平均值。

具体地,我们定义一个数组 s ,其中 s [ i ] 是一个二元组,表示第 i 层的节点值之和以及节点个数。我们对树进行深度优先搜索,对于每一个节点,我们将节点的值加到对应的 s [ i ] 中,并将节点个数加一。最后,对于每一个 s [ i ] ,我们计算平均值,加入答案数组中。

时间复杂度 O ( n ) ,空间复杂度 O ( n ) 。其中 n 是二叉树的节点个数。

Python3

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def averageOfLevels(self, root: Optional[TreeNode]) -> List[float]:
        def dfs(root, i):
            if root is None:
                return
            if len(s) == i:
                s.append([root.val, 1])
            else:
                s[i][0] += root.val
                s[i][1] += 1
            dfs(root.left, i + 1)
            dfs(root.right, i + 1)

        s = []
        dfs(root, 0)
        return [a / b for a, b in s]

Java

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    private List<Long> s = new ArrayList<>();
    private List<Integer> cnt = new ArrayList<>();

    public List<Double> averageOfLevels(TreeNode root) {
        dfs(root, 0);
        List<Double> ans = new ArrayList<>();
        for (int i = 0; i < s.size(); ++i) {
            ans.add(s.get(i) * 1.0 / cnt.get(i));
        }
        return ans;
    }

    private void dfs(TreeNode root, int i) {
        if (root == null) {
            return;
        }
        if (s.size() == i) {
            s.add((long) root.val);
            cnt.add(1);
        } else {
            s.set(i, s.get(i) + root.val);
            cnt.set(i, cnt.get(i) + 1);
        }
        dfs(root.left, i + 1);
        dfs(root.right, i + 1);
    }
}

C++

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */

using ll = long long;

class Solution {
public:
    vector<ll> s;
    vector<int> cnt;

    vector<double> averageOfLevels(TreeNode* root) {
        dfs(root, 0);
        vector<double> ans(s.size());
        for (int i = 0; i < s.size(); ++i) {
            ans[i] = (s[i] * 1.0 / cnt[i]);
        }
        return ans;
    }

    void dfs(TreeNode* root, int i) {
        if (!root) return;
        if (s.size() == i) {
            s.push_back(root->val);
            cnt.push_back(1);
        } else {
            s[i] += root->val;
            cnt[i]++;
        }
        dfs(root->left, i + 1);
        dfs(root->right, i + 1);
    }
};

Go

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func averageOfLevels(root *TreeNode) []float64 {
	s := []int{}
	cnt := []int{}
	var dfs func(root *TreeNode, i int)
	dfs = func(root *TreeNode, i int) {
		if root == nil {
			return
		}
		if len(s) == i {
			s = append(s, root.Val)
			cnt = append(cnt, 1)
		} else {
			s[i] += root.Val
			cnt[i]++
		}
		dfs(root.Left, i+1)
		dfs(root.Right, i+1)
	}
	dfs(root, 0)
	ans := []float64{}
	for i, t := range s {
		ans = append(ans, float64(t)/float64(cnt[i]))
	}
	return ans
}

JavaScript

/**
 * Definition for a binary tree node.
 * function TreeNode(val, left, right) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.left = (left===undefined ? null : left)
 *     this.right = (right===undefined ? null : right)
 * }
 */
/**
 * @param {TreeNode} root
 * @return {number[]}
 */
var averageOfLevels = function (root) {
    const s = [];
    const cnt = [];
    function dfs(root, i) {
        if (!root) {
            return;
        }
        if (s.length == i) {
            s.push(root.val);
            cnt.push(1);
        } else {
            s[i] += root.val;
            cnt[i]++;
        }
        dfs(root.left, i + 1);
        dfs(root.right, i + 1);
    }
    dfs(root, 0);
    return s.map((v, i) => v / cnt[i]);
};