Skip to content

Files

Latest commit

7ebbddf · Dec 31, 2022

History

History

0103.Binary Tree Zigzag Level Order Traversal

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Apr 22, 2021
Dec 31, 2022
Dec 31, 2022
Dec 31, 2022
Dec 31, 2022
Dec 31, 2022
Dec 31, 2022
Dec 31, 2022
Mar 30, 2022
Mar 30, 2022

English Version

题目描述

给你二叉树的根节点 root ,返回其节点值的 锯齿形层序遍历 。(即先从左往右,再从右往左进行下一层遍历,以此类推,层与层之间交替进行)。

 

示例 1:

输入:root = [3,9,20,null,null,15,7]
输出:[[3],[20,9],[15,7]]

示例 2:

输入:root = [1]
输出:[[1]]

示例 3:

输入:root = []
输出:[]

 

提示:

  • 树中节点数目在范围 [0, 2000]
  • -100 <= Node.val <= 100

解法

方法一:BFS

为了实现锯齿形层序遍历,需要在层序遍历的基础上增加一个标志位 left,用于标记当前层的节点值的顺序。如果 lefttrue,则当前层的节点值按照从左到右的顺序存入结果数组 ans 中;如果 leftfalse,则当前层的节点值按照从右到左的顺序存入结果数组 ans 中。

时间复杂度 O ( n ) ,空间复杂度 O ( n ) 。其中 n 为二叉树的节点数。

Python3

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def zigzagLevelOrder(self, root: Optional[TreeNode]) -> List[List[int]]:
        ans = []
        if root is None:
            return ans
        q = deque([root])
        ans = []
        left = 1
        while q:
            t = []
            for _ in range(len(q)):
                node = q.popleft()
                t.append(node.val)
                if node.left:
                    q.append(node.left)
                if node.right:
                    q.append(node.right)
            ans.append(t if left else t[::-1])
            left ^= 1
        return ans

Java

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<List<Integer>> zigzagLevelOrder(TreeNode root) {
        List<List<Integer>> ans = new ArrayList<>();
        if (root == null) {
            return ans;
        }
        Deque<TreeNode> q = new ArrayDeque<>();
        q.offer(root);
        boolean left = true;
        while (!q.isEmpty()) {
            List<Integer> t = new ArrayList<>();
            for (int n = q.size(); n > 0; --n) {
                TreeNode node = q.poll();
                t.add(node.val);
                if (node.left != null) {
                    q.offer(node.left);
                }
                if (node.right != null) {
                    q.offer(node.right);
                }
            }
            if (!left) {
                Collections.reverse(t);
            }
            ans.add(t);
            left = !left;
        }
        return ans;
    }
}

C++

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    vector<vector<int>> zigzagLevelOrder(TreeNode* root) {
        vector<vector<int>> ans;
        if (!root) return ans;
        queue<TreeNode*> q{{root}};
        int left = 1;
        while (!q.empty()) {
            vector<int> t;
            for (int n = q.size(); n; --n) {
                auto node = q.front();
                q.pop();
                t.emplace_back(node->val);
                if (node->left) q.push(node->left);
                if (node->right) q.push(node->right);
            }
            if (!left) reverse(t.begin(), t.end());
            ans.emplace_back(t);
            left ^= 1;
        }
        return ans;
    }
};

Go

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func zigzagLevelOrder(root *TreeNode) (ans [][]int) {
	if root == nil {
		return
	}
	q := []*TreeNode{root}
	left := true
	for len(q) > 0 {
		t := []int{}
		for n := len(q); n > 0; n-- {
			node := q[0]
			q = q[1:]
			t = append(t, node.Val)
			if node.Left != nil {
				q = append(q, node.Left)
			}
			if node.Right != nil {
				q = append(q, node.Right)
			}
		}
		if !left {
			for i, j := 0, len(t)-1; i < j; i, j = i+1, j-1 {
				t[i], t[j] = t[j], t[i]
			}
		}
		ans = append(ans, t)
		left = !left
	}
	return
}

JavaScript

/**
 * Definition for a binary tree node.
 * function TreeNode(val, left, right) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.left = (left===undefined ? null : left)
 *     this.right = (right===undefined ? null : right)
 * }
 */
/**
 * @param {TreeNode} root
 * @return {number[][]}
 */
var zigzagLevelOrder = function (root) {
    const ans = [];
    if (!root) {
        return ans;
    }
    const q = [root];
    let left = 1;
    while (q.length) {
        const t = [];
        for (let n = q.length; n; --n) {
            const node = q.shift();
            t.push(node.val);
            if (node.left) {
                q.push(node.left);
            }
            if (node.right) {
                q.push(node.right);
            }
        }
        if (!left) {
            t.reverse();
        }
        ans.push(t);
        left ^= 1;
    }
    return ans;
};

TypeScript

/**
 * Definition for a binary tree node.
 * class TreeNode {
 *     val: number
 *     left: TreeNode | null
 *     right: TreeNode | null
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
 *         this.val = (val===undefined ? 0 : val)
 *         this.left = (left===undefined ? null : left)
 *         this.right = (right===undefined ? null : right)
 *     }
 * }
 */

function zigzagLevelOrder(root: TreeNode | null): number[][] {
    const res = [];
    if (root == null) {
        return res;
    }
    let isDesc = false;
    const queue = [root];
    while (queue.length !== 0) {
        const arr = queue.slice().map(() => {
            const { val, left, right } = queue.shift();
            left && queue.push(left);
            right && queue.push(right);
            return val;
        });
        res.push(isDesc ? arr.reverse() : arr);
        isDesc = !isDesc;
    }
    return res;
}

Rust

// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
//   pub val: i32,
//   pub left: Option<Rc<RefCell<TreeNode>>>,
//   pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
//   #[inline]
//   pub fn new(val: i32) -> Self {
//     TreeNode {
//       val,
//       left: None,
//       right: None
//     }
//   }
// }
use std::rc::Rc;
use std::cell::RefCell;
use std::collections::VecDeque;
impl Solution {
    pub fn zigzag_level_order(root: Option<Rc<RefCell<TreeNode>>>) -> Vec<Vec<i32>> {
        let mut res = vec![];
        if root.is_none() {
            return res;
        }
        let mut is_desc = false;
        let mut q = VecDeque::new();
        q.push_back(root);
        while !q.is_empty() {
            let mut arr = vec![];
            for _ in 0..q.len() {
                if let Some(node) = q.pop_front().unwrap() {
                    let mut node = node.borrow_mut();
                    arr.push(node.val);
                    if node.left.is_some() {
                        q.push_back(node.left.take());
                    }
                    if node.right.is_some() {
                        q.push_back(node.right.take());
                    }
                }
            }
            if is_desc {
                arr.reverse();
            }
            is_desc = !is_desc;
            res.push(arr);
        }
        res
    }
}

...