Skip to content

Latest commit

 

History

History

0823.Binary Trees With Factors

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 

English Version

题目描述

给出一个含有不重复整数元素的数组 arr ,每个整数 arr[i] 均大于 1。

用这些整数来构建二叉树,每个整数可以使用任意次数。其中:每个非叶结点的值应等于它的两个子结点的值的乘积。

满足条件的二叉树一共有多少个?答案可能很大,返回109 + 7 取余 的结果。

 

示例 1:

输入: arr = [2, 4]
输出: 3
解释: 可以得到这些二叉树: [2], [4], [4, 2, 2]

示例 2:

输入: arr = [2, 4, 5, 10]
输出: 7
解释: 可以得到这些二叉树: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].

 

提示:

  • 1 <= arr.length <= 1000
  • 2 <= arr[i] <= 109
  • arr 中的所有值 互不相同

解法

方法一:动态规划

我们可以枚举 $arr$ 中的每一个数 $a$ 作为二叉树的根节点(根节点一定最大),然后枚举枚举左子树的值 $b$,若 $a$ 能被 $b$ 整除,则右子树的值为 $a / b$,若 $a / b$ 也在 $arr$ 中,则可以构成一棵二叉树。此时,以 $a$ 为根节点的二叉树的个数为 $f(a) = f(b) \times f(a / b)$,其中 $f(b)$$f(a / b)$ 分别为左子树和右子树的二叉树个数。

因此,我们先将 $arr$ 排序,然后用 $f[i]$ 表示以 $arr[i]$ 为根节点的二叉树的个数,最终答案即为 $f[0] + f[1] + \cdots + f[n - 1]$。注意答案可能很大,需要对 $10^9 + 7$ 取模。

时间复杂度为 $O(n^2)$,空间复杂度为 $O(n)$。其中 $n$$arr$ 的长度。

Python3

class Solution:
    def numFactoredBinaryTrees(self, arr: List[int]) -> int:
        mod = 10**9 + 7
        n = len(arr)
        arr.sort()
        idx = {v: i for i, v in enumerate(arr)}
        f = [1] * n
        for i, a in enumerate(arr):
            for j in range(i):
                b = arr[j]
                if a % b == 0 and (c := (a // b)) in idx:
                    f[i] = (f[i] + f[j] * f[idx[c]]) % mod
        return sum(f) % mod

Java

class Solution {
    public int numFactoredBinaryTrees(int[] arr) {
        final int mod = (int) 1e9 + 7;
        Arrays.sort(arr);
        int n = arr.length;
        long[] f = new long[n];
        Arrays.fill(f, 1);
        Map<Integer, Integer> idx = new HashMap<>(n);
        for (int i = 0; i < n; ++i) {
            idx.put(arr[i], i);
        }
        for (int i = 0; i < n; ++i) {
            int a = arr[i];
            for (int j = 0; j < i; ++j) {
                int b = arr[j];
                if (a % b == 0) {
                    int c = a / b;
                    if (idx.containsKey(c)) {
                        int k = idx.get(c);
                        f[i] = (f[i] + f[j] * f[k]) % mod;
                    }
                }
            }
        }
        long ans = 0;
        for (long v : f) {
            ans = (ans + v) % mod;
        }
        return (int) ans;
    }
}

C++

class Solution {
public:
    int numFactoredBinaryTrees(vector<int>& arr) {
        const int mod = 1e9 + 7;
        sort(arr.begin(), arr.end());
        unordered_map<int, int> idx;
        int n = arr.size();
        for (int i = 0; i < n; ++i) {
            idx[arr[i]] = i;
        }
        vector<long> f(n, 1);
        for (int i = 0; i < n; ++i) {
            int a = arr[i];
            for (int j = 0; j < i; ++j) {
                int b = arr[j];
                if (a % b == 0) {
                    int c = a / b;
                    if (idx.count(c)) {
                        int k = idx[c];
                        f[i] = (f[i] + 1l * f[j] * f[k]) % mod;
                    }
                }
            }
        }
        long ans = 0;
        for (long v : f) {
            ans = (ans + v) % mod;
        }
        return ans;
    }
};

Go

func numFactoredBinaryTrees(arr []int) int {
	const mod int = 1e9 + 7
	sort.Ints(arr)
	f := make([]int, len(arr))
	idx := map[int]int{}
	for i, v := range arr {
		f[i] = 1
		idx[v] = i
	}
	for i, a := range arr {
		for j := 0; j < i; j++ {
			b := arr[j]
			if c := a / b; a%b == 0 {
				if k, ok := idx[c]; ok {
					f[i] = (f[i] + f[j]*f[k]) % mod
				}
			}
		}
	}
	ans := 0
	for _, v := range f {
		ans = (ans + v) % mod
	}
	return ans
}

TypeScript

function numFactoredBinaryTrees(arr: number[]): number {
    const mod = 10 ** 9 + 7;
    arr.sort((a, b) => a - b);
    const idx: Map<number, number> = new Map();
    const n = arr.length;
    for (let i = 0; i < n; ++i) {
        idx.set(arr[i], i);
    }
    const f: number[] = new Array(n).fill(1);
    for (let i = 0; i < n; ++i) {
        const a = arr[i];
        for (let j = 0; j < i; ++j) {
            const b = arr[j];
            if (a % b === 0) {
                const c = a / b;
                if (idx.has(c)) {
                    const k = idx.get(c)!;
                    f[i] = (f[i] + f[j] * f[k]) % mod;
                }
            }
        }
    }
    return f.reduce((a, b) => a + b) % mod;
}

...