Skip to content

Files

Latest commit

49fcfcc · Dec 10, 2022

History

History

0074.Search a 2D Matrix

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Apr 22, 2021
Dec 10, 2022
Oct 12, 2022
Jun 21, 2021
Jun 21, 2021
Jun 21, 2021
Apr 3, 2022
Jun 21, 2021
Jun 10, 2022
Jun 18, 2022

English Version

题目描述

编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值。该矩阵具有如下特性:

  • 每行中的整数从左到右按升序排列。
  • 每行的第一个整数大于前一行的最后一个整数。

 

示例 1:

输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 3
输出:true

示例 2:

输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 13
输出:false

 

提示:

  • m == matrix.length
  • n == matrix[i].length
  • 1 <= m, n <= 100
  • -104 <= matrix[i][j], target <= 104

解法

方法一:二分查找

将二维矩阵逻辑展开,然后二分查找即可。

时间复杂度 O ( l o g ( m × n ) )

方法二:从左下角或右上角搜索

这里我们以左下角作为起始搜索点,往右上方向开始搜索,比较当前元素 matrix[i][j]target 的大小关系:

  • matrix[i][j] == target,说明找到了目标值,直接返回 true。
  • matrix[i][j] > target,说明这一行从当前位置开始往右的所有元素均大于 target,应该让 i 指针往上移动,即 i--
  • matrix[i][j] < target,说明这一列从当前位置开始往上的所有元素均小于 target,应该让 j 指针往右移动,即 j++

若搜索结束依然找不到 target,返回 false。

时间复杂度 O ( m + n )

Python3

二分查找:

class Solution:
    def searchMatrix(self, matrix: List[List[int]], target: int) -> bool:
        m, n = len(matrix), len(matrix[0])
        left, right = 0, m * n - 1
        while left < right:
            mid = (left + right) >> 1
            x, y = divmod(mid, n)
            if matrix[x][y] >= target:
                right = mid
            else:
                left = mid + 1
        return matrix[left // n][left % n] == target

从左下角或右上角搜索:

class Solution:
    def searchMatrix(self, matrix: List[List[int]], target: int) -> bool:
        m, n = len(matrix), len(matrix[0])
        i, j = m - 1, 0
        while i >= 0 and j < n:
            if matrix[i][j] == target:
                return True
            if matrix[i][j] > target:
                i -= 1
            else:
                j += 1
        return False

Java

二分查找:

class Solution {
    public boolean searchMatrix(int[][] matrix, int target) {
        int m = matrix.length, n = matrix[0].length;
        int left = 0, right = m * n - 1;
        while (left < right) {
            int mid = (left + right) >> 1;
            int x = mid / n, y = mid % n;
            if (matrix[x][y] >= target) {
                right = mid;
            } else {
                left = mid + 1;
            }
        }
        return matrix[left / n][left % n] == target;
    }
}

从左下角或右上角搜索:

class Solution {
    public boolean searchMatrix(int[][] matrix, int target) {
        int m = matrix.length, n = matrix[0].length;
        for (int i = m - 1, j = 0; i >= 0 && j < n;) {
            if (matrix[i][j] == target) {
                return true;
            }
            if (matrix[i][j] > target) {
                --i;
            } else {
                ++j;
            }
        }
        return false;
    }
}

C++

二分查找:

class Solution {
public:
    bool searchMatrix(vector<vector<int>>& matrix, int target) {
        int m = matrix.size(), n = matrix[0].size();
        int left = 0, right = m * n - 1;
        while (left < right) {
            int mid = left + right >> 1;
            int x = mid / n, y = mid % n;
            if (matrix[x][y] >= target) {
                right = mid;
            } else {
                left = mid + 1;
            }
        }
        return matrix[left / n][left % n] == target;
    }
};

从左下角或右上角搜索:

class Solution {
public:
    bool searchMatrix(vector<vector<int>>& matrix, int target) {
        int m = matrix.size(), n = matrix[0].size();
        for (int i = m - 1, j = 0; i >= 0 && j < n;)
        {
            if (matrix[i][j] == target) return true;
            if (matrix[i][j] > target) --i;
            else ++j;
        }
        return false;
    }
};

JavaScript

二分查找:

/**
 * @param {number[][]} matrix
 * @param {number} target
 * @return {boolean}
 */
var searchMatrix = function (matrix, target) {
    const m = matrix.length,
        n = matrix[0].length;
    let left = 0,
        right = m * n - 1;
    while (left < right) {
        const mid = (left + right + 1) >> 1;
        const x = Math.floor(mid / n);
        const y = mid % n;
        if (matrix[x][y] <= target) {
            left = mid;
        } else {
            right = mid - 1;
        }
    }
    return matrix[Math.floor(left / n)][left % n] == target;
};

从左下角或右上角搜索:

/**
 * @param {number[][]} matrix
 * @param {number} target
 * @return {boolean}
 */
var searchMatrix = function (matrix, target) {
    const m = matrix.length,
        n = matrix[0].length;
    for (let i = m - 1, j = 0; i >= 0 && j < n; ) {
        if (matrix[i][j] == target) {
            return true;
        }
        if (matrix[i][j] > target) {
            --i;
        } else {
            ++j;
        }
    }
    return false;
};

Go

二分查找:

func searchMatrix(matrix [][]int, target int) bool {
	m, n := len(matrix), len(matrix[0])
	left, right := 0, m*n-1
	for left < right {
		mid := (left + right) >> 1
		x, y := mid/n, mid%n
		if matrix[x][y] >= target {
			right = mid
		} else {
			left = mid + 1
		}
	}
	return matrix[left/n][left%n] == target
}

从左下角或右上角搜索:

func searchMatrix(matrix [][]int, target int) bool {
	m, n := len(matrix), len(matrix[0])
	for i, j := m-1, 0; i >= 0 && j < n; {
		if matrix[i][j] == target {
			return true
		}
		if matrix[i][j] > target {
			i--
		} else {
			j++
		}
	}
	return false
}

TypeScript

function searchMatrix(matrix: number[][], target: number): boolean {
    const m = matrix.length;
    const n = matrix[0].length;
    let left = 0;
    let right = m * n;
    while (left < right) {
        const mid = (left + right) >>> 1;
        const i = Math.floor(mid / n);
        const j = mid % n;
        if (matrix[i][j] === target) {
            return true;
        }

        if (matrix[i][j] < target) {
            left = mid + 1;
        } else {
            right = mid;
        }
    }
    return false;
}

Rust

use std::cmp::Ordering;
impl Solution {
    pub fn search_matrix(matrix: Vec<Vec<i32>>, target: i32) -> bool {
        let m = matrix.len();
        let n = matrix[0].len();
        let mut i = 0;
        let mut j = n;
        while i < m && j > 0 {
            match matrix[i][j - 1].cmp(&target) {
                Ordering::Equal => return true,
                Ordering::Less => i += 1,
                Ordering::Greater => j -= 1,
            }
        }
        false
    }
}
use std::cmp::Ordering;
impl Solution {
    pub fn search_matrix(matrix: Vec<Vec<i32>>, target: i32) -> bool {
        let m = matrix.len();
        let n = matrix[0].len();
        let mut left = 0;
        let mut right = m * n;
        while left < right {
            let mid = left + (right - left) / 2;
            let i = mid / n;
            let j = mid % n;
            match matrix[i][j].cmp(&target) {
                Ordering::Equal => return true,
                Ordering::Less => left = mid + 1,
                Ordering::Greater => right = mid,
            }
        }
        false
    }
}

...