Skip to content

Latest commit

 

History

History

0105.Construct Binary Tree from Preorder and Inorder Traversal

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 

English Version

题目描述

给定两个整数数组 preorderinorder ,其中 preorder 是二叉树的先序遍历inorder 是同一棵树的中序遍历,请构造二叉树并返回其根节点。

 

示例 1:

输入: preorder = [3,9,20,15,7], inorder = [9,3,15,20,7]
输出: [3,9,20,null,null,15,7]

示例 2:

输入: preorder = [-1], inorder = [-1]
输出: [-1]

 

提示:

  • 1 <= preorder.length <= 3000
  • inorder.length == preorder.length
  • -3000 <= preorder[i], inorder[i] <= 3000
  • preorder 和 inorder 均 无重复 元素
  • inorder 均出现在 preorder
  • preorder 保证 为二叉树的前序遍历序列
  • inorder 保证 为二叉树的中序遍历序列

解法

前序序列的第一个结点 preorder[0] 为根节点,我们在中序序列中找到根节点的位置 i,可以将中序序列划分为左子树 inorder[:i] 、右子树 inorder[i+1:]

通过左右子树的区间,可以计算出左、右子树节点的个数,假设为 m、n。然后在前序节点中,从根节点往后的 m 个节点为左子树,再往后的 n 个节点为右子树。

递归求解即可。

前序遍历:先遍历根节点,再遍历左右子树;中序遍历:先遍历左子树,再遍历根节点,最后遍历右子树。

Python3

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def buildTree(self, preorder: List[int], inorder: List[int]) -> TreeNode:
        if not preorder:
            return None
        v = preorder[0]
        root = TreeNode(val=v)
        i = inorder.index(v)
        root.left = self.buildTree(preorder[1:1 + i], inorder[:i])
        root.right = self.buildTree(preorder[1 + i:], inorder[i + 1:])
        return root

Java

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    private Map<Integer, Integer> indexes = new HashMap<>();

    public TreeNode buildTree(int[] preorder, int[] inorder) {
        for (int i = 0; i < inorder.length; ++i) {
            indexes.put(inorder[i], i);
        }
        return dfs(preorder, inorder, 0, 0, preorder.length);
    }

    private TreeNode dfs(int[] preorder, int[] inorder, int i, int j, int n) {
        if (n <= 0) {
            return null;
        }
        int v = preorder[i];
        int k = indexes.get(v);
        TreeNode root = new TreeNode(v);
        root.left = dfs(preorder, inorder, i + 1, j, k - j);
        root.right = dfs(preorder, inorder, i + 1 + k - j, k + 1, n - k + j - 1);
        return root;
    }
}

C++

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    unordered_map<int, int> indexes;

    TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
        for (int i = 0; i < inorder.size(); ++i) indexes[inorder[i]] = i;
        return dfs(preorder, inorder, 0, 0, inorder.size());
    }

    TreeNode* dfs(vector<int>& preorder, vector<int>& inorder, int i, int j, int n) {
        if (n <= 0) return nullptr;
        int v = preorder[i];
        int k = indexes[v];
        TreeNode* root = new TreeNode(v);
        root->left = dfs(preorder, inorder, i + 1, j, k - j);
        root->right = dfs(preorder, inorder, i + 1 + k - j, k + 1, n - k + j - 1);
        return root;
    }
};

Go

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func buildTree(preorder []int, inorder []int) *TreeNode {
	indexes := make(map[int]int)
	for i, v := range inorder {
		indexes[v] = i
	}
	var dfs func(i, j, n int) *TreeNode
	dfs = func(i, j, n int) *TreeNode {
		if n <= 0 {
			return nil
		}
		v := preorder[i]
		k := indexes[v]
		root := &TreeNode{Val: v}
		root.Left = dfs(i+1, j, k-j)
		root.Right = dfs(i+1+k-j, k+1, n-k+j-1)
		return root
	}
	return dfs(0, 0, len(inorder))
}

...