Skip to content

Files

0062.Unique Paths

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Aug 16, 2020
Aug 21, 2023
Aug 21, 2023
Aug 21, 2023
Aug 21, 2023
Aug 21, 2023
Aug 21, 2023
Aug 21, 2023
Aug 21, 2023
Aug 21, 2023

English Version

题目描述

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

 

示例 1:

输入:m = 3, n = 7
输出:28

示例 2:

输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右
3. 向下 -> 向右 -> 向下

示例 3:

输入:m = 7, n = 3
输出:28

示例 4:

输入:m = 3, n = 3
输出:6

 

提示:

  • 1 <= m, n <= 100
  • 题目数据保证答案小于等于 2 * 109

解法

方法一:动态规划

我们定义 f [ i ] [ j ] 表示从左上角走到 ( i , j ) 的路径数量,初始时 f [ 0 ] [ 0 ] = 1 ,答案为 f [ m 1 ] [ n 1 ]

考虑 f [ i ] [ j ]

  • 如果 i > 0 ,那么 f [ i ] [ j ] 可以从 f [ i 1 ] [ j ] 走一步到达,因此 f [ i ] [ j ] = f [ i ] [ j ] + f [ i 1 ] [ j ]
  • 如果 j > 0 ,那么 f [ i ] [ j ] 可以从 f [ i ] [ j 1 ] 走一步到达,因此 f [ i ] [ j ] = f [ i ] [ j ] + f [ i ] [ j 1 ]

因此,我们有如下的状态转移方程:

f [ i ] [ j ] = { 1 i = 0 , j = 0 f [ i 1 ] [ j ] + f [ i ] [ j 1 ] otherwise

最终的答案即为 f [ m 1 ] [ n 1 ]

时间复杂度 O ( m × n ) ,空间复杂度 O ( m × n ) 。其中 m n 分别是网格的行数和列数。

我们注意到 f [ i ] [ j ] 仅与 f [ i 1 ] [ j ] f [ i ] [ j 1 ] 有关,因此我们优化掉第一维空间,仅保留第二维空间,得到时间复杂度 O ( m × n ) ,空间复杂度 O ( n ) 的实现。

Python3

class Solution:
    def uniquePaths(self, m: int, n: int) -> int:
        f = [[0] * n for _ in range(m)]
        f[0][0] = 1
        for i in range(m):
            for j in range(n):
                if i:
                    f[i][j] += f[i - 1][j]
                if j:
                    f[i][j] += f[i][j - 1]
        return f[-1][-1]
class Solution:
    def uniquePaths(self, m: int, n: int) -> int:
        f = [[1] * n for _ in range(m)]
        for i in range(1, m):
            for j in range(1, n):
                f[i][j] = f[i - 1][j] + f[i][j - 1]
        return f[-1][-1]
class Solution:
    def uniquePaths(self, m: int, n: int) -> int:
        f = [1] * n
        for _ in range(1, m):
            for j in range(1, n):
                f[j] += f[j - 1]
        return f[-1]

Java

class Solution {
    public int uniquePaths(int m, int n) {
        var f = new int[m][n];
        f[0][0] = 1;
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (i > 0) {
                    f[i][j] += f[i - 1][j];
                }
                if (j > 0) {
                    f[i][j] += f[i][j - 1];
                }
            }
        }
        return f[m - 1][n - 1];
    }
}
class Solution {
    public int uniquePaths(int m, int n) {
        var f = new int[m][n];
        for (var g : f) {
            Arrays.fill(g, 1);
        }
        for (int i = 1; i < m; ++i) {
            for (int j = 1; j < n; j++) {
                f[i][j] = f[i - 1][j] + f[i][j - 1];
            }
        }
        return f[m - 1][n - 1];
    }
}
class Solution {
    public int uniquePaths(int m, int n) {
        int[] f = new int[n];
        Arrays.fill(f, 1);
        for (int i = 1; i < m; ++i) {
            for (int j = 1; j < n; ++j) {
                f[j] += f[j - 1];
            }
        }
        return f[n - 1];
    }
}

C++

class Solution {
public:
    int uniquePaths(int m, int n) {
        vector<vector<int>> f(m, vector<int>(n));
        f[0][0] = 1;
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (i) {
                    f[i][j] += f[i - 1][j];
                }
                if (j) {
                    f[i][j] += f[i][j - 1];
                }
            }
        }
        return f[m - 1][n - 1];
    }
};
class Solution {
public:
    int uniquePaths(int m, int n) {
        vector<vector<int>> f(m, vector<int>(n, 1));
        for (int i = 1; i < m; ++i) {
            for (int j = 1; j < n; ++j) {
                f[i][j] = f[i - 1][j] + f[i][j - 1];
            }
        }
        return f[m - 1][n - 1];
    }
};
class Solution {
public:
    int uniquePaths(int m, int n) {
        vector<int> f(n, 1);
        for (int i = 1; i < m; ++i) {
            for (int j = 1; j < n; ++j) {
                f[j] += f[j - 1];
            }
        }
        return f[n - 1];
    }
};

Go

func uniquePaths(m int, n int) int {
	f := make([][]int, m)
	for i := range f {
		f[i] = make([]int, n)
	}
	f[0][0] = 1
	for i := 0; i < m; i++ {
		for j := 0; j < n; j++ {
			if i > 0 {
				f[i][j] += f[i-1][j]
			}
			if j > 0 {
				f[i][j] += f[i][j-1]
			}
		}
	}
	return f[m-1][n-1]
}
func uniquePaths(m int, n int) int {
	f := make([][]int, m)
	for i := range f {
		f[i] = make([]int, n)
		for j := range f[i] {
			f[i][j] = 1
		}
	}
	for i := 1; i < m; i++ {
		for j := 1; j < n; j++ {
			f[i][j] = f[i-1][j] + f[i][j-1]
		}
	}
	return f[m-1][n-1]
}
func uniquePaths(m int, n int) int {
	f := make([]int, n+1)
	for i := range f {
		f[i] = 1
	}
	for i := 1; i < m; i++ {
		for j := 1; j < n; j++ {
			f[j] += f[j-1]
		}
	}
	return f[n-1]
}

TypeScript

function uniquePaths(m: number, n: number): number {
    const f: number[][] = Array(m)
        .fill(0)
        .map(() => Array(n).fill(0));
    f[0][0] = 1;
    for (let i = 0; i < m; ++i) {
        for (let j = 0; j < n; ++j) {
            if (i > 0) {
                f[i][j] += f[i - 1][j];
            }
            if (j > 0) {
                f[i][j] += f[i][j - 1];
            }
        }
    }
    return f[m - 1][n - 1];
}
function uniquePaths(m: number, n: number): number {
    const f: number[][] = Array(m)
        .fill(0)
        .map(() => Array(n).fill(1));
    for (let i = 1; i < m; ++i) {
        for (let j = 1; j < n; ++j) {
            f[i][j] = f[i - 1][j] + f[i][j - 1];
        }
    }
    return f[m - 1][n - 1];
}
function uniquePaths(m: number, n: number): number {
    const f: number[] = Array(n).fill(1);
    for (let i = 1; i < m; ++i) {
        for (let j = 1; j < n; ++j) {
            f[j] += f[j - 1];
        }
    }
    return f[n - 1];
}

JavaScript

/**
 * @param {number} m
 * @param {number} n
 * @return {number}
 */
var uniquePaths = function (m, n) {
    const f = Array(m)
        .fill(0)
        .map(() => Array(n).fill(0));
    f[0][0] = 1;
    for (let i = 0; i < m; ++i) {
        for (let j = 0; j < n; ++j) {
            if (i > 0) {
                f[i][j] += f[i - 1][j];
            }
            if (j > 0) {
                f[i][j] += f[i][j - 1];
            }
        }
    }
    return f[m - 1][n - 1];
};
/**
 * @param {number} m
 * @param {number} n
 * @return {number}
 */
var uniquePaths = function (m, n) {
    const f = Array(m)
        .fill(0)
        .map(() => Array(n).fill(1));
    for (let i = 1; i < m; ++i) {
        for (let j = 1; j < n; ++j) {
            f[i][j] = f[i - 1][j] + f[i][j - 1];
        }
    }
    return f[m - 1][n - 1];
};
/**
 * @param {number} m
 * @param {number} n
 * @return {number}
 */
var uniquePaths = function (m, n) {
    const f = Array(n).fill(1);
    for (let i = 1; i < m; ++i) {
        for (let j = 1; j < n; ++j) {
            f[j] += f[j - 1];
        }
    }
    return f[n - 1];
};

Rust

impl Solution {
    pub fn unique_paths(m: i32, n: i32) -> i32 {
        let (m, n) = (m as usize, n as usize);
        let mut f = vec![1; n];
        for i in 1..m {
            for j in 1..n {
                f[j] += f[j - 1];
            }
        }
        f[n - 1]
    }
}

...