Skip to content

Files

Latest commit

c28dbd6 · Jun 21, 2024

History

History

0236.Lowest Common Ancestor of a Binary Tree

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Aug 16, 2020
Jun 21, 2024
Jun 21, 2024
Feb 9, 2024
Feb 9, 2024
Feb 9, 2024
Feb 9, 2024
Feb 9, 2024
Jun 21, 2024
Feb 9, 2024
comments difficulty edit_url tags
true
中等
深度优先搜索
二叉树

English Version

题目描述

给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。

百度百科中最近公共祖先的定义为:“对于有根树 T 的两个节点 p、q,最近公共祖先表示为一个节点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”

 

示例 1:

输入:root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
输出:3
解释:节点 5 和节点 1 的最近公共祖先是节点 3 。

示例 2:

输入:root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
输出:5
解释:节点 5 和节点 4 的最近公共祖先是节点 5 。因为根据定义最近公共祖先节点可以为节点本身。

示例 3:

输入:root = [1,2], p = 1, q = 2
输出:1

 

提示:

  • 树中节点数目在范围 [2, 105] 内。
  • -109 <= Node.val <= 109
  • 所有 Node.val 互不相同
  • p != q
  • pq 均存在于给定的二叉树中。

解法

方法一:递归

我们递归遍历二叉树:

如果当前节点为空或者等于 p 或者 q ,则返回当前节点;

否则,我们递归遍历左右子树,将返回的结果分别记为 l e f t r i g h t 。如果 l e f t r i g h t 都不为空,则说明 p q 分别在左右子树中,因此当前节点即为最近公共祖先;如果 l e f t r i g h t 中只有一个不为空,返回不为空的那个。

时间复杂度 O ( n ) ,空间复杂度 O ( n ) 。其中 n 为二叉树节点个数。

Python3

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None


class Solution:
    def lowestCommonAncestor(
        self, root: "TreeNode", p: "TreeNode", q: "TreeNode"
    ) -> "TreeNode":
        if root in (None, p, q):
            return root
        left = self.lowestCommonAncestor(root.left, p, q)
        right = self.lowestCommonAncestor(root.right, p, q)
        return root if left and right else (left or right)

Java

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
        if (root == null || root == p || root == q) {
            return root;
        }
        var left = lowestCommonAncestor(root.left, p, q);
        var right = lowestCommonAncestor(root.right, p, q);
        if (left != null && right != null) {
            return root;
        }
        return left == null ? right : left;
    }
}

C++

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
        if (root == nullptr || root == p || root == q) {
            return root;
        }
        auto left = lowestCommonAncestor(root->left, p, q);
        auto right = lowestCommonAncestor(root->right, p, q);
        if (left && right) {
            return root;
        }
        return left ? left : right;
    }
};

Go

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func lowestCommonAncestor(root, p, q *TreeNode) *TreeNode {
	if root == nil || root == p || root == q {
		return root
	}
	left := lowestCommonAncestor(root.Left, p, q)
	right := lowestCommonAncestor(root.Right, p, q)
	if left != nil && right != nil {
		return root
	}
	if left != nil {
		return left
	}
	return right
}

TypeScript

/**
 * Definition for a binary tree node.
 * class TreeNode {
 *     val: number
 *     left: TreeNode | null
 *     right: TreeNode | null
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
 *         this.val = (val===undefined ? 0 : val)
 *         this.left = (left===undefined ? null : left)
 *         this.right = (right===undefined ? null : right)
 *     }
 * }
 */

function lowestCommonAncestor(
    root: TreeNode | null,
    p: TreeNode | null,
    q: TreeNode | null,
): TreeNode | null {
    if (!root || root === p || root === q) {
        return root;
    }
    const left = lowestCommonAncestor(root.left, p, q);
    const right = lowestCommonAncestor(root.right, p, q);
    return left && right ? root : left || right;
}

Rust

// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
//   pub val: i32,
//   pub left: Option<Rc<RefCell<TreeNode>>>,
//   pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
//   #[inline]
//   pub fn new(val: i32) -> Self {
//     TreeNode {
//       val,
//       left: None,
//       right: None
//     }
//   }
// }
use std::cell::RefCell;
use std::rc::Rc;
impl Solution {
    pub fn lowest_common_ancestor(
        root: Option<Rc<RefCell<TreeNode>>>,
        p: Option<Rc<RefCell<TreeNode>>>,
        q: Option<Rc<RefCell<TreeNode>>>,
    ) -> Option<Rc<RefCell<TreeNode>>> {
        if root.is_none() || root == p || root == q {
            return root;
        }
        let left = Self::lowest_common_ancestor(
            root.as_ref().unwrap().borrow().left.clone(),
            p.clone(),
            q.clone(),
        );
        let right = Self::lowest_common_ancestor(
            root.as_ref().unwrap().borrow().right.clone(),
            p.clone(),
            q.clone(),
        );
        if left.is_some() && right.is_some() {
            return root;
        }
        if left.is_none() {
            return right;
        }
        return left;
    }
}

JavaScript

/**
 * Definition for a binary tree node.
 * function TreeNode(val) {
 *     this.val = val;
 *     this.left = this.right = null;
 * }
 */
/**
 * @param {TreeNode} root
 * @param {TreeNode} p
 * @param {TreeNode} q
 * @return {TreeNode}
 */
var lowestCommonAncestor = function (root, p, q) {
    if (!root || root === p || root === q) {
        return root;
    }
    const left = lowestCommonAncestor(root.left, p, q);
    const right = lowestCommonAncestor(root.right, p, q);
    return left && right ? root : left || right;
};