Skip to content

Files

Latest commit

4d6c701 · Feb 21, 2024

History

History

0416.Partition Equal Subset Sum

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Feb 21, 2024
Feb 21, 2024
Jan 13, 2024
Jan 13, 2024
Jan 13, 2024
Jan 13, 2024
Jan 13, 2024
Nov 9, 2023
Jan 13, 2024
Jan 13, 2024
Jan 13, 2024
Jan 13, 2024
Jan 13, 2024
Jan 13, 2024
Jan 13, 2024
Jan 13, 2024

English Version

题目描述

给你一个 只包含正整数 非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

 

示例 1:

输入:nums = [1,5,11,5]
输出:true
解释:数组可以分割成 [1, 5, 5] 和 [11] 。

示例 2:

输入:nums = [1,2,3,5]
输出:false
解释:数组不能分割成两个元素和相等的子集。

 

提示:

  • 1 <= nums.length <= 200
  • 1 <= nums[i] <= 100

解法

方法一:动态规划

我们先计算出数组的总和 s ,如果总和是奇数,那么一定不能分割成两个和相等的子集,直接返回 f a l s e 。如果总和是偶数,我们记目标子集的和为 m = s 2 ,那么问题就转化成了:是否存在一个子集,使得其元素的和为 m

我们定义 f [ i ] [ j ] 表示前 i 个数中选取若干个数,使得其元素的和恰好为 j 。初始时 f [ 0 ] [ 0 ] = t r u e ,其余 f [ i ] [ j ] = f a l s e 。答案为 f [ n ] [ m ]

考虑 f [ i ] [ j ] ,如果我们选取了第 i 个数 x ,那么 f [ i ] [ j ] = f [ i 1 ] [ j x ] ;如果我们没有选取第 i 个数 x ,那么 f [ i ] [ j ] = f [ i 1 ] [ j ] 。因此状态转移方程为:

f [ i ] [ j ] = f [ i 1 ] [ j ]  or  f [ i 1 ] [ j x ]  if  j x

最终答案为 f [ n ] [ m ]

注意到 f [ i ] [ j ] 只与 f [ i 1 ] [ ] 有关,因此我们可以将二维数组压缩成一维数组。

时间复杂度 O ( n × m ) ,空间复杂度 O ( m ) 。其中 n 是数组的长度,而 m 是数组的总和的一半。

class Solution:
    def canPartition(self, nums: List[int]) -> bool:
        m, mod = divmod(sum(nums), 2)
        if mod:
            return False
        n = len(nums)
        f = [[False] * (m + 1) for _ in range(n + 1)]
        f[0][0] = True
        for i, x in enumerate(nums, 1):
            for j in range(m + 1):
                f[i][j] = f[i - 1][j] or (j >= x and f[i - 1][j - x])
        return f[n][m]
class Solution {
    public boolean canPartition(int[] nums) {
        // int s = Arrays.stream(nums).sum();
        int s = 0;
        for (int x : nums) {
            s += x;
        }
        if (s % 2 == 1) {
            return false;
        }
        int n = nums.length;
        int m = s >> 1;
        boolean[][] f = new boolean[n + 1][m + 1];
        f[0][0] = true;
        for (int i = 1; i <= n; ++i) {
            int x = nums[i - 1];
            for (int j = 0; j <= m; ++j) {
                f[i][j] = f[i - 1][j] || (j >= x && f[i - 1][j - x]);
            }
        }
        return f[n][m];
    }
}
class Solution {
public:
    bool canPartition(vector<int>& nums) {
        int s = accumulate(nums.begin(), nums.end(), 0);
        if (s % 2 == 1) {
            return false;
        }
        int n = nums.size();
        int m = s >> 1;
        bool f[n + 1][m + 1];
        memset(f, false, sizeof(f));
        f[0][0] = true;
        for (int i = 1; i <= n; ++i) {
            int x = nums[i - 1];
            for (int j = 0; j <= m; ++j) {
                f[i][j] = f[i - 1][j] || (j >= x && f[i - 1][j - x]);
            }
        }
        return f[n][m];
    }
};
func canPartition(nums []int) bool {
	s := 0
	for _, x := range nums {
		s += x
	}
	if s%2 == 1 {
		return false
	}
	n, m := len(nums), s>>1
	f := make([][]bool, n+1)
	for i := range f {
		f[i] = make([]bool, m+1)
	}
	f[0][0] = true
	for i := 1; i <= n; i++ {
		x := nums[i-1]
		for j := 0; j <= m; j++ {
			f[i][j] = f[i-1][j] || (j >= x && f[i-1][j-x])
		}
	}
	return f[n][m]
}
function canPartition(nums: number[]): boolean {
    const s = nums.reduce((a, b) => a + b, 0);
    if (s % 2 === 1) {
        return false;
    }
    const n = nums.length;
    const m = s >> 1;
    const f: boolean[][] = Array(n + 1)
        .fill(0)
        .map(() => Array(m + 1).fill(false));
    f[0][0] = true;
    for (let i = 1; i <= n; ++i) {
        const x = nums[i - 1];
        for (let j = 0; j <= m; ++j) {
            f[i][j] = f[i - 1][j] || (j >= x && f[i - 1][j - x]);
        }
    }
    return f[n][m];
}
impl Solution {
    #[allow(dead_code)]
    pub fn can_partition(nums: Vec<i32>) -> bool {
        let mut sum = 0;
        for e in &nums {
            sum += *e;
        }

        if sum % 2 != 0 {
            return false;
        }

        let n = nums.len();
        let m = (sum / 2) as usize;
        let mut dp: Vec<Vec<bool>> = vec![vec![false; m + 1]; n + 1];

        // Initialize the dp vector
        dp[0][0] = true;

        // Begin the actual dp process
        for i in 1..=n {
            for j in 0..=m {
                dp[i][j] = if (nums[i - 1] as usize) > j {
                    dp[i - 1][j]
                } else {
                    dp[i - 1][j] || dp[i - 1][j - (nums[i - 1] as usize)]
                };
            }
        }

        dp[n][m]
    }
}
/**
 * @param {number[]} nums
 * @return {boolean}
 */
var canPartition = function (nums) {
    const s = nums.reduce((a, b) => a + b, 0);
    if (s % 2 === 1) {
        return false;
    }
    const n = nums.length;
    const m = s >> 1;
    const f = Array(n + 1)
        .fill(0)
        .map(() => Array(m + 1).fill(false));
    f[0][0] = true;
    for (let i = 1; i <= n; ++i) {
        const x = nums[i - 1];
        for (let j = 0; j <= m; ++j) {
            f[i][j] = f[i - 1][j] || (j >= x && f[i - 1][j - x]);
        }
    }
    return f[n][m];
};

方法二

class Solution:
    def canPartition(self, nums: List[int]) -> bool:
        m, mod = divmod(sum(nums), 2)
        if mod:
            return False
        f = [True] + [False] * m
        for x in nums:
            for j in range(m, x - 1, -1):
                f[j] = f[j] or f[j - x]
        return f[m]
class Solution {
    public boolean canPartition(int[] nums) {
        // int s = Arrays.stream(nums).sum();
        int s = 0;
        for (int x : nums) {
            s += x;
        }
        if (s % 2 == 1) {
            return false;
        }
        int m = s >> 1;
        boolean[] f = new boolean[m + 1];
        f[0] = true;
        for (int x : nums) {
            for (int j = m; j >= x; --j) {
                f[j] |= f[j - x];
            }
        }
        return f[m];
    }
}
class Solution {
public:
    bool canPartition(vector<int>& nums) {
        int s = accumulate(nums.begin(), nums.end(), 0);
        if (s % 2 == 1) {
            return false;
        }
        int m = s >> 1;
        bool f[m + 1];
        memset(f, false, sizeof(f));
        f[0] = true;
        for (int& x : nums) {
            for (int j = m; j >= x; --j) {
                f[j] |= f[j - x];
            }
        }
        return f[m];
    }
};
func canPartition(nums []int) bool {
	s := 0
	for _, x := range nums {
		s += x
	}
	if s%2 == 1 {
		return false
	}
	m := s >> 1
	f := make([]bool, m+1)
	f[0] = true
	for _, x := range nums {
		for j := m; j >= x; j-- {
			f[j] = f[j] || f[j-x]
		}
	}
	return f[m]
}
function canPartition(nums: number[]): boolean {
    const s = nums.reduce((a, b) => a + b, 0);
    if (s % 2 === 1) {
        return false;
    }
    const m = s >> 1;
    const f: boolean[] = Array(m + 1).fill(false);
    f[0] = true;
    for (const x of nums) {
        for (let j = m; j >= x; --j) {
            f[j] = f[j] || f[j - x];
        }
    }
    return f[m];
}
impl Solution {
    #[allow(dead_code)]
    pub fn can_partition(nums: Vec<i32>) -> bool {
        let mut sum = 0;
        for e in &nums {
            sum += *e;
        }

        if sum % 2 != 0 {
            return false;
        }

        let m = (sum >> 1) as usize;

        // Here dp[i] means if it can be sum up to `i` for all the number we've traversed through so far
        // Which is actually compressing the 2-D dp vector to 1-D
        let mut dp: Vec<bool> = vec![false; m + 1];

        // Initialize the dp vector
        dp[0] = true;

        // Begin the actual dp process
        for e in &nums {
            // For every num in nums vector
            for i in (*e as usize..=m).rev() {
                // Update the current status
                dp[i] |= dp[i - (*e as usize)];
            }
        }

        dp[m]
    }
}
/**
 * @param {number[]} nums
 * @return {boolean}
 */
var canPartition = function (nums) {
    const s = nums.reduce((a, b) => a + b, 0);
    if (s % 2 === 1) {
        return false;
    }
    const m = s >> 1;
    const f = Array(m + 1).fill(false);
    f[0] = true;
    for (const x of nums) {
        for (let j = m; j >= x; --j) {
            f[j] = f[j] || f[j - x];
        }
    }
    return f[m];
};