Skip to content

Files

1895.Largest Magic Square

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Jun 13, 2021
Aug 9, 2021
Aug 9, 2021
Aug 9, 2021
Aug 9, 2021
Aug 9, 2021
Aug 9, 2021
Aug 9, 2021

English Version

题目描述

一个 k x k 的 幻方 指的是一个 k x k 填满整数的方格阵,且每一行、每一列以及两条对角线的和 全部相等 。幻方中的整数 不需要互不相同 。显然,每个 1 x 1 的方格都是一个幻方。

给你一个 m x n 的整数矩阵 grid ,请你返回矩阵中 最大幻方 的 尺寸 (即边长 k)。

 

示例 1:

输入:grid = [[7,1,4,5,6],[2,5,1,6,4],[1,5,4,3,2],[1,2,7,3,4]]
输出:3
解释:最大幻方尺寸为 3 。
每一行,每一列以及两条对角线的和都等于 12 。
- 每一行的和:5+1+6 = 5+4+3 = 2+7+3 = 12
- 每一列的和:5+5+2 = 1+4+7 = 6+3+3 = 12
- 对角线的和:5+4+3 = 6+4+2 = 12

示例 2:

输入:grid = [[5,1,3,1],[9,3,3,1],[1,3,3,8]]
输出:2

 

提示:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 50
  • 1 <= grid[i][j] <= 106

解法

先求每行、每列的前缀和。然后从大到小枚举尺寸 k,找到第一个符合条件的 k,然后返回即可。否则最后返回 1。

Python3

class Solution:
    def largestMagicSquare(self, grid: List[List[int]]) -> int:
        m, n = len(grid), len(grid[0])
        rowsum = [[0] * (n + 1) for _ in range(m + 1)]
        colsum = [[0] * (n + 1) for _ in range(m + 1)]
        for i in range(1, m + 1):
            for j in range(1, n + 1):
                rowsum[i][j] = rowsum[i][j - 1] + grid[i - 1][j - 1]
                colsum[i][j] = colsum[i - 1][j] + grid[i - 1][j - 1]

        def check(x1, y1, x2, y2):
            val = rowsum[x1 + 1][y2 + 1] - rowsum[x1 + 1][y1]
            for i in range(x1 + 1, x2 + 1):
                if rowsum[i + 1][y2 + 1] - rowsum[i + 1][y1] != val:
                    return False
            for j in range(y1, y2 + 1):
                if colsum[x2 + 1][j + 1] - colsum[x1][j + 1] != val:
                    return False
            s, i, j = 0, x1, y1
            while i <= x2:
                s += grid[i][j]
                i += 1
                j += 1
            if s != val:
                return False
            s, i, j = 0, x1, y2
            while i <= x2:
                s += grid[i][j]
                i += 1
                j -= 1
            if s != val:
                return False
            return True

        for k in range(min(m, n), 1, -1):
            i = 0
            while i + k - 1 < m:
                j = 0
                while j + k - 1 < n:
                    i2, j2 = i + k - 1, j + k - 1
                    if check(i, j, i2, j2):
                        return k
                    j += 1
                i += 1
        return 1

Java

class Solution {
    private int[][] rowsum;
    private int[][] colsum;

    public int largestMagicSquare(int[][] grid) {
        int m = grid.length, n = grid[0].length;
        rowsum = new int[m + 1][n + 1];
        colsum = new int[m + 1][n + 1];
        for (int i = 1; i <= m; ++i) {
            for (int j = 1; j <= n; ++j) {
                rowsum[i][j] = rowsum[i][j - 1] + grid[i - 1][j - 1];
                colsum[i][j] = colsum[i - 1][j] + grid[i - 1][j - 1];
            }
        }
        for (int k = Math.min(m, n); k > 1; --k) {
            for (int i = 0; i + k - 1 < m; ++i) {
                for (int j = 0; j + k - 1 < n; ++j) {
                    int i2 = i + k - 1, j2 = j + k - 1;
                    if (check(grid, i, j, i2, j2)) {
                        return k;
                    }
                }
            }
        }
        return 1;
    }

    private boolean check(int[][] grid, int x1, int y1, int x2, int y2) {
        int val = rowsum[x1 + 1][y2 + 1] - rowsum[x1 + 1][y1];
        for (int i = x1 + 1; i <= x2; ++i) {
            if (rowsum[i + 1][y2 + 1] - rowsum[i + 1][y1] != val) {
                return false;
            }
        }
        for (int j = y1; j <= y2; ++j) {
            if (colsum[x2 + 1][j + 1] - colsum[x1][j + 1] != val) {
                return false;
            }
        }
        int s = 0;
        for (int i = x1, j = y1; i <= x2; ++i, ++j) {
            s += grid[i][j];
        }
        if (s != val) {
            return false;
        }
        s = 0;
        for (int i = x1, j = y2; i <= x2; ++i, --j) {
            s += grid[i][j];
        }
        if (s != val) {
            return false;
        }
        return true;
    }
}

TypeScript

function largestMagicSquare(grid: number[][]): number {
    let m = grid.length, n = grid[0].length;
    // 前缀和
    let rowSum = Array.from({length: m + 1}, (v, i) => new Array(n + 1).fill(0)),
    colSum = Array.from({length: m + 1}, v => new Array(n + 1).fill(0));
    for (let i = 0; i < m; i++) {
        rowSum[i + 1][1] = grid[i][0];
        for (let j = 1; j < n; j++) {
            rowSum[i + 1][j + 1] = rowSum[i + 1][j] + grid[i][j];
        }
    }
    
    for (let j = 0; j < n; j++) {
        colSum[1][j + 1] = grid[0][j];
        for (let i = 1; i < m; i++) {
            colSum[i + 1][j + 1] = colSum[i][j + 1] + grid[i][j];
        }
    }
    // console.log(rowSum, colSum)
    // 寻找最大k
    for (let k = Math.min(m, n); k > 1; k--) {
        for (let i = 0; i + k - 1 < m; i++) {
            for (let j = 0; j + k - 1 < n; j++) {
                let x2 = i + k - 1, y2 = j + k - 1;
                if (valid(grid, rowSum, colSum, i, j, x2, y2)) {
                    return k;
                }
            }
        }
    }
    return 1;
};

function valid(grid: number[][], rowSum: number[][], colSum: number[][], x1: number, y1: number, x2: number, y2: number): boolean {
    let diff = rowSum[x1 + 1][y2 + 1] - rowSum[x1 + 1][y1];
    // 行
    for (let i = x1 + 1; i <= x2; i++) {
        if (diff != (rowSum[i + 1][y2 + 1] - rowSum[i + 1][y1])) {
            return false;
        }
    }
    // 列
    for (let j = y1; j <= y2; j++) {
        if (diff != (colSum[x2 + 1][j + 1] - colSum[x1][j + 1])) {
            return false;
        }
    }
    // 主队对角线
    let mainSum = diff;
    for (let i = x1, j = y1; i <= x2; i++, j++) {
        mainSum -= grid[i][j];
    }
    if (mainSum != 0) return false;
    // 副对角线
    let subSum = diff;
    for (let i = x1, j = y2; i <= x2; i++, j--) {
        subSum -= grid[i][j];
    }
    if (subSum != 0) return false;
    return true;
}

C++

class Solution {
public:
    int largestMagicSquare(vector<vector<int>> &grid) {
        int m = grid.size(), n = grid.size();
        vector<vector<int>> rowsum(m + 1, vector<int>(n + 1));
        vector<vector<int>> colsum(m + 1, vector<int>(n + 1));
        for (int i = 1; i <= m; ++i)
        {
            for (int j = 1; j <= n; ++j)
            {
                rowsum[i][j] = rowsum[i][j - 1] + grid[i - 1][j - 1];
                colsum[i][j] = colsum[i - 1][j] + grid[i - 1][j - 1];
            }
        }
        for (int k = min(m, n); k > 1; --k)
        {
            for (int i = 0; i + k - 1 < m; ++i)
            {
                for (int j = 0; j + k - 1 < n; ++j)
                {
                    int i2 = i + k - 1, j2 = j + k - 1;
                    if (check(grid, rowsum, colsum, i, j, i2, j2))
                        return k;
                }
            }
        }
        return 1;
    }

    bool check(vector<vector<int>> &grid, vector<vector<int>> &rowsum, vector<vector<int>> &colsum, int x1, int y1, int x2, int y2)
    {
        int val = rowsum[x1 + 1][y2 + 1] - rowsum[x1 + 1][y1];
        for (int i = x1 + 1; i <= x2; ++i)
            if (rowsum[i + 1][y2 + 1] - rowsum[i + 1][y1] != val)
                return false;
        for (int j = y1; j <= y2; ++j)
            if (colsum[x2 + 1][j + 1] - colsum[x1][j + 1] != val)
                return false;
        int s = 0;
        for (int i = x1, j = y1; i <= x2; ++i, ++j)
            s += grid[i][j];
        if (s != val)
            return false;
        s = 0;
        for (int i = x1, j = y2; i <= x2; ++i, --j)
            s += grid[i][j];
        if (s != val)
            return false;
        return true;
    }
};

Go

func largestMagicSquare(grid [][]int) int {
	m, n := len(grid), len(grid[0])
	rowsum := make([][]int, m+1)
	colsum := make([][]int, m+1)
	for i := 0; i <= m; i++ {
		rowsum[i] = make([]int, n+1)
		colsum[i] = make([]int, n+1)
	}
	for i := 1; i < m+1; i++ {
		for j := 1; j < n+1; j++ {
			rowsum[i][j] = rowsum[i][j-1] + grid[i-1][j-1]
			colsum[i][j] = colsum[i-1][j] + grid[i-1][j-1]
		}
	}
	for k := min(m, n); k > 1; k-- {
		for i := 0; i+k-1 < m; i++ {
			for j := 0; j+k-1 < n; j++ {
				i2, j2 := i+k-1, j+k-1
				if check(grid, rowsum, colsum, i, j, i2, j2) {
					return k
				}
			}
		}
	}
	return 1
}

func check(grid, rowsum, colsum [][]int, x1, y1, x2, y2 int) bool {
	val := rowsum[x1+1][y2+1] - rowsum[x1+1][y1]
	for i := x1 + 1; i < x2+1; i++ {
		if rowsum[i+1][y2+1]-rowsum[i+1][y1] != val {
			return false
		}
	}
	for j := y1; j < y2+1; j++ {
		if colsum[x2+1][j+1]-colsum[x1][j+1] != val {
			return false
		}
	}
	s := 0
	for i, j := x1, y1; i <= x2; i, j = i+1, j+1 {
		s += grid[i][j]
	}
	if s != val {
		return false
	}
	s = 0
	for i, j := x1, y2; i <= x2; i, j = i+1, j-1 {
		s += grid[i][j]
	}
	if s != val {
		return false
	}
	return true
}

func min(a, b int) int {
	if a > b {
		return a
	}
	return b
}

...