Skip to content

Latest commit

 

History

History

0081.Search in Rotated Sorted Array II

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 

English Version

题目描述

已知存在一个按非降序排列的整数数组 nums ,数组中的值不必互不相同。

在传递给函数之前,nums 在预先未知的某个下标 k0 <= k < nums.length)上进行了 旋转 ,使数组变为 [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]](下标 从 0 开始 计数)。例如, [0,1,2,4,4,4,5,6,6,7] 在下标 5 处经旋转后可能变为 [4,5,6,6,7,0,1,2,4,4]

给你 旋转后 的数组 nums 和一个整数 target ,请你编写一个函数来判断给定的目标值是否存在于数组中。如果 nums 中存在这个目标值 target ,则返回 true ,否则返回 false

你必须尽可能减少整个操作步骤。

 

示例 1:

输入:nums = [2,5,6,0,0,1,2], target = 0
输出:true

示例 2:

输入:nums = [2,5,6,0,0,1,2], target = 3
输出:false

 

提示:

  • 1 <= nums.length <= 5000
  • -104 <= nums[i] <= 104
  • 题目数据保证 nums 在预先未知的某个下标上进行了旋转
  • -104 <= target <= 104

 

进阶:

  • 这是 搜索旋转排序数组 的延伸题目,本题中的 nums  可能包含重复元素。
  • 这会影响到程序的时间复杂度吗?会有怎样的影响,为什么?

 

解法

方法一:二分查找

我们定义二分查找的左边界 $l=0$,右边界 $r=n-1$,其中 $n$ 为数组的长度。

每次在二分查找的过程中,我们会得到当前的中点 $mid=(l+r)/2$

  • 如果 $nums[mid] \gt nums[r]$,说明 $[l,mid]$ 是有序的,此时如果 $nums[l] \le target \le nums[mid]$,说明 $target$ 位于 $[l,mid]$,否则 $target$ 位于 $[mid+1,r]$
  • 如果 $nums[mid] \lt nums[r]$,说明 $[mid+1,r]$ 是有序的,此时如果 $nums[mid] \lt target \le nums[r]$,说明 $target$ 位于 $[mid+1,r]$,否则 $target$ 位于 $[l,mid]$
  • 如果 $nums[mid] = nums[r]$,说明元素 $nums[mid]$$nums[r]$ 相等,此时无法判断 $target$ 位于哪个区间,我们只能将 $r$ 减少 $1$

二分查找结束后,如果 $nums[l] = target$,则说明数组中存在目标值 $target$,否则说明不存在。

时间复杂度近似 $O(\log n)$,空间复杂度 $O(1)$。其中 $n$ 为数组的长度。

class Solution:
    def search(self, nums: List[int], target: int) -> bool:
        n = len(nums)
        l, r = 0, n - 1
        while l < r:
            mid = (l + r) >> 1
            if nums[mid] > nums[r]:
                if nums[l] <= target <= nums[mid]:
                    r = mid
                else:
                    l = mid + 1
            elif nums[mid] < nums[r]:
                if nums[mid] < target <= nums[r]:
                    l = mid + 1
                else:
                    r = mid
            else:
                r -= 1
        return nums[l] == target
class Solution {
    public boolean search(int[] nums, int target) {
        int l = 0, r = nums.length - 1;
        while (l < r) {
            int mid = (l + r) >> 1;
            if (nums[mid] > nums[r]) {
                if (nums[l] <= target && target <= nums[mid]) {
                    r = mid;
                } else {
                    l = mid + 1;
                }
            } else if (nums[mid] < nums[r]) {
                if (nums[mid] < target && target <= nums[r]) {
                    l = mid + 1;
                } else {
                    r = mid;
                }
            } else {
                --r;
            }
        }
        return nums[l] == target;
    }
}
class Solution {
public:
    bool search(vector<int>& nums, int target) {
        int l = 0, r = nums.size() - 1;
        while (l < r) {
            int mid = (l + r) >> 1;
            if (nums[mid] > nums[r]) {
                if (nums[l] <= target && target <= nums[mid]) {
                    r = mid;
                } else {
                    l = mid + 1;
                }
            } else if (nums[mid] < nums[r]) {
                if (nums[mid] < target && target <= nums[r]) {
                    l = mid + 1;
                } else {
                    r = mid;
                }
            } else {
                --r;
            }
        }
        return nums[l] == target;
    }
};
func search(nums []int, target int) bool {
	l, r := 0, len(nums)-1
	for l < r {
		mid := (l + r) >> 1
		if nums[mid] > nums[r] {
			if nums[l] <= target && target <= nums[mid] {
				r = mid
			} else {
				l = mid + 1
			}
		} else if nums[mid] < nums[r] {
			if nums[mid] < target && target <= nums[r] {
				l = mid + 1
			} else {
				r = mid
			}
		} else {
			r--
		}
	}
	return nums[l] == target
}
function search(nums: number[], target: number): boolean {
    let [l, r] = [0, nums.length - 1];
    while (l < r) {
        const mid = (l + r) >> 1;
        if (nums[mid] > nums[r]) {
            if (nums[l] <= target && target <= nums[mid]) {
                r = mid;
            } else {
                l = mid + 1;
            }
        } else if (nums[mid] < nums[r]) {
            if (nums[mid] < target && target <= nums[r]) {
                l = mid + 1;
            } else {
                r = mid;
            }
        } else {
            --r;
        }
    }
    return nums[l] === target;
}