编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值。该矩阵具有如下特性:
- 每行中的整数从左到右按升序排列。
- 每行的第一个整数大于前一行的最后一个整数。
示例 1:
输入: matrix = [ [1, 3, 5, 7], [10, 11, 16, 20], [23, 30, 34, 50] ] target = 3 输出: true
示例 2:
输入: matrix = [ [1, 3, 5, 7], [10, 11, 16, 20], [23, 30, 34, 50] ] target = 13 输出: false
将二维矩阵逻辑展开,然后二分查找即可。
class Solution:
def searchMatrix(self, matrix: List[List[int]], target: int) -> bool:
m, n = len(matrix), len(matrix[0])
l, h = 0, m * n - 1
while l <= h:
mid = (l + h) >> 1
x, y = divmod(mid, n)
if matrix[x][y] == target:
return True
if matrix[x][y] < target:
l = mid + 1
else:
h = mid - 1
return False
class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
int m = matrix.length, n = matrix[0].length;
int l = 0, h = m * n - 1;
while (l <= h) {
int mid = (l + h) >>> 1;
int x = mid / n, y = mid % n;
if (matrix[x][y] == target) return true;
if (matrix[x][y] < target) l = mid + 1;
else h = mid - 1;
}
return false;
}
}
class Solution {
public:
bool searchMatrix(vector<vector<int>>& matrix, int target) {
int m = matrix.size(), n = matrix[0].size();
int l = 0, h = m * n - 1;
while (l <= h) {
int mid = l + ((h - l) >> 1);
int x = mid / n, y = mid % n;
if (matrix[x][y] == target) return true;
if (matrix[x][y] < target) l = mid + 1;
else h = mid - 1;
}
return false;
}
};