--- comments: true difficulty: 困难 edit_url: https://github.com/doocs/leetcode/edit/main/solution/0100-0199/0124.Binary%20Tree%20Maximum%20Path%20Sum/README.md tags: - 树 - 深度优先搜索 - 动态规划 - 二叉树 --- <!-- problem:start --> # [124. 二叉树中的最大路径和](https://leetcode.cn/problems/binary-tree-maximum-path-sum) [English Version](/solution/0100-0199/0124.Binary%20Tree%20Maximum%20Path%20Sum/README_EN.md) ## 题目描述 <!-- description:start --> <p>二叉树中的<strong> 路径</strong> 被定义为一条节点序列,序列中每对相邻节点之间都存在一条边。同一个节点在一条路径序列中 <strong>至多出现一次</strong> 。该路径<strong> 至少包含一个 </strong>节点,且不一定经过根节点。</p> <p><strong>路径和</strong> 是路径中各节点值的总和。</p> <p>给你一个二叉树的根节点 <code>root</code> ,返回其 <strong>最大路径和</strong> 。</p> <p> </p> <p><strong>示例 1:</strong></p> <img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0124.Binary%20Tree%20Maximum%20Path%20Sum/images/exx1.jpg" style="width: 322px; height: 182px;" /> <pre> <strong>输入:</strong>root = [1,2,3] <strong>输出:</strong>6 <strong>解释:</strong>最优路径是 2 -> 1 -> 3 ,路径和为 2 + 1 + 3 = 6</pre> <p><strong>示例 2:</strong></p> <img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0124.Binary%20Tree%20Maximum%20Path%20Sum/images/exx2.jpg" /> <pre> <strong>输入:</strong>root = [-10,9,20,null,null,15,7] <strong>输出:</strong>42 <strong>解释:</strong>最优路径是 15 -> 20 -> 7 ,路径和为 15 + 20 + 7 = 42 </pre> <p> </p> <p><strong>提示:</strong></p> <ul> <li>树中节点数目范围是 <code>[1, 3 * 10<sup>4</sup>]</code></li> <li><code>-1000 <= Node.val <= 1000</code></li> </ul> <!-- description:end --> ## 解法 <!-- solution:start --> ### 方法一:递归 我们思考二叉树递归问题的经典套路: 1. 终止条件(何时终止递归) 2. 递归处理左右子树 3. 合并左右子树的计算结果 对于本题,我们设计一个函数 $dfs(root)$,它返回以 $root$ 为根节点的二叉树的最大路径和。 函数 $dfs(root)$ 的执行逻辑如下: 如果 $root$ 不存在,那么 $dfs(root)$ 返回 $0$; 否则,我们递归计算 $root$ 的左子树和右子树的最大路径和,分别记为 $left$ 和 $right$。如果 $left$ 小于 $0$,那么我们将其置为 $0$,同理,如果 $right$ 小于 $0$,那么我们将其置为 $0$。 然后,我们用 $root.val + left + right$ 更新答案。最后,函数返回 $root.val + \max(left, right)$。 在主函数中,我们调用 $dfs(root)$,即可得到每个节点的最大路径和,其中的最大值即为答案。 时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是二叉树的节点数。 <!-- tabs:start --> #### Python3 ```python # Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def maxPathSum(self, root: Optional[TreeNode]) -> int: def dfs(root: Optional[TreeNode]) -> int: if root is None: return 0 left = max(0, dfs(root.left)) right = max(0, dfs(root.right)) nonlocal ans ans = max(ans, root.val + left + right) return root.val + max(left, right) ans = -inf dfs(root) return ans ``` #### Java ```java /** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode() {} * TreeNode(int val) { this.val = val; } * TreeNode(int val, TreeNode left, TreeNode right) { * this.val = val; * this.left = left; * this.right = right; * } * } */ class Solution { private int ans = -1001; public int maxPathSum(TreeNode root) { dfs(root); return ans; } private int dfs(TreeNode root) { if (root == null) { return 0; } int left = Math.max(0, dfs(root.left)); int right = Math.max(0, dfs(root.right)); ans = Math.max(ans, root.val + left + right); return root.val + Math.max(left, right); } } ``` #### C++ ```cpp /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode() : val(0), left(nullptr), right(nullptr) {} * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} * }; */ class Solution { public: int maxPathSum(TreeNode* root) { int ans = -1001; function<int(TreeNode*)> dfs = [&](TreeNode* root) { if (!root) { return 0; } int left = max(0, dfs(root->left)); int right = max(0, dfs(root->right)); ans = max(ans, left + right + root->val); return root->val + max(left, right); }; dfs(root); return ans; } }; ``` #### Go ```go /** * Definition for a binary tree node. * type TreeNode struct { * Val int * Left *TreeNode * Right *TreeNode * } */ func maxPathSum(root *TreeNode) int { ans := -1001 var dfs func(*TreeNode) int dfs = func(root *TreeNode) int { if root == nil { return 0 } left := max(0, dfs(root.Left)) right := max(0, dfs(root.Right)) ans = max(ans, left+right+root.Val) return max(left, right) + root.Val } dfs(root) return ans } ``` #### TypeScript ```ts /** * Definition for a binary tree node. * class TreeNode { * val: number * left: TreeNode | null * right: TreeNode | null * constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { * this.val = (val===undefined ? 0 : val) * this.left = (left===undefined ? null : left) * this.right = (right===undefined ? null : right) * } * } */ function maxPathSum(root: TreeNode | null): number { let ans = -1001; const dfs = (root: TreeNode | null): number => { if (!root) { return 0; } const left = Math.max(0, dfs(root.left)); const right = Math.max(0, dfs(root.right)); ans = Math.max(ans, left + right + root.val); return Math.max(left, right) + root.val; }; dfs(root); return ans; } ``` #### Rust ```rust // Definition for a binary tree node. // #[derive(Debug, PartialEq, Eq)] // pub struct TreeNode { // pub val: i32, // pub left: Option<Rc<RefCell<TreeNode>>>, // pub right: Option<Rc<RefCell<TreeNode>>>, // } // // impl TreeNode { // #[inline] // pub fn new(val: i32) -> Self { // TreeNode { // val, // left: None, // right: None // } // } // } use std::cell::RefCell; use std::rc::Rc; impl Solution { fn dfs(root: &Option<Rc<RefCell<TreeNode>>>, res: &mut i32) -> i32 { if root.is_none() { return 0; } let node = root.as_ref().unwrap().borrow(); let left = (0).max(Self::dfs(&node.left, res)); let right = (0).max(Self::dfs(&node.right, res)); *res = (node.val + left + right).max(*res); node.val + left.max(right) } pub fn max_path_sum(root: Option<Rc<RefCell<TreeNode>>>) -> i32 { let mut res = -1000; Self::dfs(&root, &mut res); res } } ``` #### JavaScript ```js /** * Definition for a binary tree node. * function TreeNode(val, left, right) { * this.val = (val===undefined ? 0 : val) * this.left = (left===undefined ? null : left) * this.right = (right===undefined ? null : right) * } */ /** * @param {TreeNode} root * @return {number} */ var maxPathSum = function (root) { let ans = -1001; const dfs = root => { if (!root) { return 0; } const left = Math.max(0, dfs(root.left)); const right = Math.max(0, dfs(root.right)); ans = Math.max(ans, left + right + root.val); return Math.max(left, right) + root.val; }; dfs(root); return ans; }; ``` #### C# ```cs /** * Definition for a binary tree node. * public class TreeNode { * public int val; * public TreeNode left; * public TreeNode right; * public TreeNode(int val=0, TreeNode left=null, TreeNode right=null) { * this.val = val; * this.left = left; * this.right = right; * } * } */ public class Solution { private int ans = -1001; public int MaxPathSum(TreeNode root) { dfs(root); return ans; } private int dfs(TreeNode root) { if (root == null) { return 0; } int left = Math.Max(0, dfs(root.left)); int right = Math.Max(0, dfs(root.right)); ans = Math.Max(ans, left + right + root.val); return root.val + Math.Max(left, right); } } ``` <!-- tabs:end --> <!-- solution:end --> <!-- problem:end -->