# [101. 对称二叉树](https://leetcode.cn/problems/symmetric-tree) [English Version](/solution/0100-0199/0101.Symmetric%20Tree/README_EN.md) ## 题目描述 <!-- 这里写题目描述 --> <p>给你一个二叉树的根节点 <code>root</code> , 检查它是否轴对称。</p> <p> </p> <p><strong>示例 1:</strong></p> <img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0101.Symmetric%20Tree/images/symtree1.jpg" style="width: 354px; height: 291px;" /> <pre> <strong>输入:</strong>root = [1,2,2,3,4,4,3] <strong>输出:</strong>true </pre> <p><strong>示例 2:</strong></p> <img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0101.Symmetric%20Tree/images/symtree2.jpg" style="width: 308px; height: 258px;" /> <pre> <strong>输入:</strong>root = [1,2,2,null,3,null,3] <strong>输出:</strong>false </pre> <p> </p> <p><strong>提示:</strong></p> <ul> <li>树中节点数目在范围 <code>[1, 1000]</code> 内</li> <li><code>-100 <= Node.val <= 100</code></li> </ul> <p> </p> <p><strong>进阶:</strong>你可以运用递归和迭代两种方法解决这个问题吗?</p> ## 解法 <!-- 这里可写通用的实现逻辑 --> **方法一:递归** 我们设计一个函数 $dfs(root1, root2)$,用于判断两个二叉树是否对称。答案即为 $dfs(root, root)$。 函数 $dfs(root1, root2)$ 的逻辑如下: - 如果 $root1$ 和 $root2$ 都为空,则两个二叉树对称,返回 `true`; - 如果 $root1$ 和 $root2$ 中只有一个为空,或者 $root1.val \neq root2.val$,则两个二叉树不对称,返回 `false`; - 否则,判断 $root1$ 的左子树和 $root2$ 的右子树是否对称,以及 $root1$ 的右子树和 $root2$ 的左子树是否对称,这里使用了递归。 时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是二叉树的节点数。 <!-- tabs:start --> ### **Python3** <!-- 这里可写当前语言的特殊实现逻辑 --> ```python # Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def isSymmetric(self, root: Optional[TreeNode]) -> bool: def dfs(root1, root2): if root1 is None and root2 is None: return True if root1 is None or root2 is None or root1.val != root2.val: return False return dfs(root1.left, root2.right) and dfs(root1.right, root2.left) return dfs(root, root) ``` ### **Java** <!-- 这里可写当前语言的特殊实现逻辑 --> ```java /** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode() {} * TreeNode(int val) { this.val = val; } * TreeNode(int val, TreeNode left, TreeNode right) { * this.val = val; * this.left = left; * this.right = right; * } * } */ class Solution { public boolean isSymmetric(TreeNode root) { return dfs(root, root); } private boolean dfs(TreeNode root1, TreeNode root2) { if (root1 == null && root2 == null) { return true; } if (root1 == null || root2 == null || root1.val != root2.val) { return false; } return dfs(root1.left, root2.right) && dfs(root1.right, root2.left); } } ``` ### **C++** ```cpp /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode() : val(0), left(nullptr), right(nullptr) {} * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} * }; */ class Solution { public: bool isSymmetric(TreeNode* root) { function<bool(TreeNode*, TreeNode*)> dfs = [&](TreeNode* root1, TreeNode* root2) -> bool { if (!root1 && !root2) return true; if (!root1 || !root2 || root1->val != root2->val) return false; return dfs(root1->left, root2->right) && dfs(root1->right, root2->left); }; return dfs(root, root); } }; ``` ### **Go** ```go /** * Definition for a binary tree node. * type TreeNode struct { * Val int * Left *TreeNode * Right *TreeNode * } */ func isSymmetric(root *TreeNode) bool { var dfs func(*TreeNode, *TreeNode) bool dfs = func(root1, root2 *TreeNode) bool { if root1 == nil && root2 == nil { return true } if root1 == nil || root2 == nil || root1.Val != root2.Val { return false } return dfs(root1.Left, root2.Right) && dfs(root1.Right, root2.Left) } return dfs(root, root) } ``` ### **TypeScript** ```ts /** * Definition for a binary tree node. * class TreeNode { * val: number * left: TreeNode | null * right: TreeNode | null * constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { * this.val = (val===undefined ? 0 : val) * this.left = (left===undefined ? null : left) * this.right = (right===undefined ? null : right) * } * } */ const dfs = (root1: TreeNode | null, root2: TreeNode | null) => { if (root1 == root2) { return true; } if (root1 == null || root2 == null || root1.val != root2.val) { return false; } return dfs(root1.left, root2.right) && dfs(root1.right, root2.left); }; function isSymmetric(root: TreeNode | null): boolean { return dfs(root.left, root.right); } ``` ### **Rust** ```rust // Definition for a binary tree node. // #[derive(Debug, PartialEq, Eq)] // pub struct TreeNode { // pub val: i32, // pub left: Option<Rc<RefCell<TreeNode>>>, // pub right: Option<Rc<RefCell<TreeNode>>>, // } // // impl TreeNode { // #[inline] // pub fn new(val: i32) -> Self { // TreeNode { // val, // left: None, // right: None // } // } // } use std::rc::Rc; use std::cell::RefCell; impl Solution { fn dfs(root1: &Option<Rc<RefCell<TreeNode>>>, root2: &Option<Rc<RefCell<TreeNode>>>) -> bool { if root1.is_none() && root2.is_none() { return true; } if root1.is_none() || root2.is_none() { return false; } let node1 = root1.as_ref().unwrap().borrow(); let node2 = root2.as_ref().unwrap().borrow(); node1.val == node2.val && Self::dfs(&node1.left, &node2.right) && Self::dfs(&node1.right, &node2.left) } pub fn is_symmetric(root: Option<Rc<RefCell<TreeNode>>>) -> bool { let node = root.as_ref().unwrap().borrow(); Self::dfs(&node.left, &node.right) } } ``` ```rust // Definition for a binary tree node. // #[derive(Debug, PartialEq, Eq)] // pub struct TreeNode { // pub val: i32, // pub left: Option<Rc<RefCell<TreeNode>>>, // pub right: Option<Rc<RefCell<TreeNode>>>, // } // // impl TreeNode { // #[inline] // pub fn new(val: i32) -> Self { // TreeNode { // val, // left: None, // right: None // } // } // } use std::rc::Rc; use std::cell::RefCell; use std::collections::VecDeque; impl Solution { pub fn is_symmetric(root: Option<Rc<RefCell<TreeNode>>>) -> bool { let root = root.unwrap(); let mut node = root.as_ref().borrow_mut(); let mut queue = VecDeque::new(); queue.push_back([node.left.take(), node.right.take()]); while let Some([root1, root2]) = queue.pop_front() { if root1.is_none() && root2.is_none() { continue; } if root1.is_none() || root2.is_none() { return false; } if let (Some(node1), Some(node2)) = (root1, root2) { let mut node1 = node1.as_ref().borrow_mut(); let mut node2 = node2.as_ref().borrow_mut(); if node1.val != node2.val { return false; } queue.push_back([node1.left.take(), node2.right.take()]); queue.push_back([node1.right.take(), node2.left.take()]); } } true } } ``` ### **...** ``` ``` <!-- tabs:end --> ``` ```