# [311. 稀疏矩阵的乘法](https://leetcode.cn/problems/sparse-matrix-multiplication) [English Version](/solution/0300-0399/0311.Sparse%20Matrix%20Multiplication/README_EN.md) ## 题目描述 <!-- 这里写题目描述 --> <p>给定两个 <a href="https://baike.baidu.com/item/%E7%A8%80%E7%96%8F%E7%9F%A9%E9%98%B5" target="_blank">稀疏矩阵</a> :大小为 <code>m x k</code> 的稀疏矩阵 <code>mat1</code> 和大小为 <code>k x n</code> 的稀疏矩阵 <code>mat2</code> ,返回 <code>mat1 x mat2</code> 的结果。你可以假设乘法总是可能的。</p> <p> </p> <p><strong>示例 1:</strong></p> <p><img src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0311.Sparse%20Matrix%20Multiplication/images/mult-grid.jpg" style="height: 142px; width: 500px;" /></p> <pre> <strong>输入:</strong>mat1 = [[1,0,0],[-1,0,3]], mat2 = [[7,0,0],[0,0,0],[0,0,1]] <strong>输出:</strong>[[7,0,0],[-7,0,3]] </pre> <p><strong> 示例 2:</strong></p> <pre> <b>输入:</b>mat1 = [[0]], mat2 = [[0]] <b>输出:</b>[[0]] </pre> <p> </p> <p><strong>提示:</strong></p> <ul> <li><code>m == mat1.length</code></li> <li><code>k == mat1[i].length == mat2.length</code></li> <li><code>n == mat2[i].length</code></li> <li><code>1 <= m, n, k <= 100</code></li> <li><code>-100 <= mat1[i][j], mat2[i][j] <= 100</code></li> </ul> ## 解法 <!-- 这里可写通用的实现逻辑 --> **方法一:直接相乘** 我们可以直接按照矩阵乘法的定义,计算出结果矩阵中的每一个元素。 时间复杂度 $O(m \times n \times k)$,空间复杂度 $O(m \times n)$。 **方法二:预处理** 我们可以预处理出两个矩阵的稀疏表示,即 $g1[i]$ 表示矩阵 $mat1$ 第 $i$ 行中所有非零元素的列下标和值,而 $g2[i]$ 表示矩阵 $mat2$ 第 $i$ 行中所有非零元素的列下标和值。 接下来,我们遍历每一行 $i$,遍历 $g1[i]$ 中的每一个元素 $(k, x)$,遍历 $g2[k]$ 中的每一个元素 $(j, y)$,那么最终 $mat1[i][k] \times mat2[k][j]$ 就会对应到结果矩阵中的 $ans[i][j]$,我们将所有的结果累加即可。 时间复杂度 $O(m \times n \times k)$,空间复杂度 $O(m \times n)$。 <!-- tabs:start --> ### **Python3** <!-- 这里可写当前语言的特殊实现逻辑 --> ```python class Solution: def multiply(self, mat1: List[List[int]], mat2: List[List[int]]) -> List[List[int]]: m, n = len(mat1), len(mat2[0]) ans = [[0] * n for _ in range(m)] for i in range(m): for j in range(n): for k in range(len(mat2)): ans[i][j] += mat1[i][k] * mat2[k][j] return ans ``` ```python class Solution: def multiply(self, mat1: List[List[int]], mat2: List[List[int]]) -> List[List[int]]: def f(mat: List[List[int]]) -> List[List[int]]: g = [[] for _ in range(len(mat))] for i, row in enumerate(mat): for j, x in enumerate(row): if x: g[i].append((j, x)) return g g1 = f(mat1) g2 = f(mat2) m, n = len(mat1), len(mat2[0]) ans = [[0] * n for _ in range(m)] for i in range(m): for k, x in g1[i]: for j, y in g2[k]: ans[i][j] += x * y return ans ``` ### **Java** <!-- 这里可写当前语言的特殊实现逻辑 --> ```java class Solution { public int[][] multiply(int[][] mat1, int[][] mat2) { int m = mat1.length, n = mat2[0].length; int[][] ans = new int[m][n]; for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { for (int k = 0; k < mat2.length; ++k) { ans[i][j] += mat1[i][k] * mat2[k][j]; } } } return ans; } } ``` ```java class Solution { public int[][] multiply(int[][] mat1, int[][] mat2) { int m = mat1.length, n = mat2[0].length; int[][] ans = new int[m][n]; var g1 = f(mat1); var g2 = f(mat2); for (int i = 0; i < m; ++i) { for (int[] p : g1[i]) { int k = p[0], x = p[1]; for (int[] q : g2[k]) { int j = q[0], y = q[1]; ans[i][j] += x * y; } } } return ans; } private List<int[]>[] f(int[][] mat) { int m = mat.length, n = mat[0].length; List<int[]>[] g = new List[m]; Arrays.setAll(g, i -> new ArrayList<>()); for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { if (mat[i][j] != 0) { g[i].add(new int[] {j, mat[i][j]}); } } } return g; } } ``` ### **C++** ```cpp class Solution { public: vector<vector<int>> multiply(vector<vector<int>>& mat1, vector<vector<int>>& mat2) { int m = mat1.size(), n = mat2[0].size(); vector<vector<int>> ans(m, vector<int>(n)); for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { for (int k = 0; k < mat2.size(); ++k) { ans[i][j] += mat1[i][k] * mat2[k][j]; } } } return ans; } }; ``` ```cpp class Solution { public: vector<vector<int>> multiply(vector<vector<int>>& mat1, vector<vector<int>>& mat2) { int m = mat1.size(), n = mat2[0].size(); vector<vector<int>> ans(m, vector<int>(n)); auto g1 = f(mat1), g2 = f(mat2); for (int i = 0; i < m; ++i) { for (auto& [k, x] : g1[i]) { for (auto& [j, y] : g2[k]) { ans[i][j] += x * y; } } } return ans; } vector<vector<pair<int, int>>> f(vector<vector<int>>& mat) { int m = mat.size(), n = mat[0].size(); vector<vector<pair<int, int>>> g(m); for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { if (mat[i][j]) { g[i].emplace_back(j, mat[i][j]); } } } return g; } }; ``` ### **Go** ```go func multiply(mat1 [][]int, mat2 [][]int) [][]int { m, n := len(mat1), len(mat2[0]) ans := make([][]int, m) for i := range ans { ans[i] = make([]int, n) } for i := 0; i < m; i++ { for j := 0; j < n; j++ { for k := 0; k < len(mat2); k++ { ans[i][j] += mat1[i][k] * mat2[k][j] } } } return ans } ``` ```go func multiply(mat1 [][]int, mat2 [][]int) [][]int { m, n := len(mat1), len(mat2[0]) ans := make([][]int, m) for i := range ans { ans[i] = make([]int, n) } f := func(mat [][]int) [][][2]int { m, n := len(mat), len(mat[0]) g := make([][][2]int, m) for i := range g { g[i] = make([][2]int, 0, n) for j := range mat[i] { if mat[i][j] != 0 { g[i] = append(g[i], [2]int{j, mat[i][j]}) } } } return g } g1, g2 := f(mat1), f(mat2) for i := range g1 { for _, p := range g1[i] { k, x := p[0], p[1] for _, q := range g2[k] { j, y := q[0], q[1] ans[i][j] += x * y } } } return ans } ``` ### **TypeScript** ```ts function multiply(mat1: number[][], mat2: number[][]): number[][] { const [m, n] = [mat1.length, mat2[0].length]; const ans: number[][] = Array.from({ length: m }, () => Array.from({ length: n }, () => 0)); for (let i = 0; i < m; ++i) { for (let j = 0; j < n; ++j) { for (let k = 0; k < mat2.length; ++k) { ans[i][j] += mat1[i][k] * mat2[k][j]; } } } return ans; } ``` ```ts function multiply(mat1: number[][], mat2: number[][]): number[][] { const [m, n] = [mat1.length, mat2[0].length]; const ans: number[][] = Array.from({ length: m }, () => Array.from({ length: n }, () => 0)); const f = (mat: number[][]): number[][][] => { const [m, n] = [mat.length, mat[0].length]; const ans: number[][][] = Array.from({ length: m }, () => []); for (let i = 0; i < m; ++i) { for (let j = 0; j < n; ++j) { if (mat[i][j] !== 0) { ans[i].push([j, mat[i][j]]); } } } return ans; }; const g1 = f(mat1); const g2 = f(mat2); for (let i = 0; i < m; ++i) { for (const [k, x] of g1[i]) { for (const [j, y] of g2[k]) { ans[i][j] += x * y; } } } return ans; } ``` ### **...** ``` ``` <!-- tabs:end -->