# [90. 子集 II](https://leetcode-cn.com/problems/subsets-ii)

[English Version](/solution/0000-0099/0090.Subsets%20II/README_EN.md)

## 题目描述

<!-- 这里写题目描述 -->

<p>给你一个整数数组 <code>nums</code> ,其中可能包含重复元素,请你返回该数组所有可能的子集(幂集)。</p>

<p>解集 <strong>不能</strong> 包含重复的子集。返回的解集中,子集可以按 <strong>任意顺序</strong> 排列。</p>

<div class="original__bRMd">
<div>
<p> </p>

<p><strong>示例 1:</strong></p>

<pre>
<strong>输入:</strong>nums = [1,2,2]
<strong>输出:</strong>[[],[1],[1,2],[1,2,2],[2],[2,2]]
</pre>

<p><strong>示例 2:</strong></p>

<pre>
<strong>输入:</strong>nums = [0]
<strong>输出:</strong>[[],[0]]
</pre>

<p> </p>

<p><strong>提示:</strong></p>

<ul>
	<li><code>1 <= nums.length <= 10</code></li>
	<li><code>-10 <= nums[i] <= 10</code></li>
</ul>
</div>
</div>


## 解法

<!-- 这里可写通用的实现逻辑 -->

<!-- tabs:start -->

### **Python3**

<!-- 这里可写当前语言的特殊实现逻辑 -->

```python
class Solution:
    def subsetsWithDup(self, nums: List[int]) -> List[List[int]]:
        def dfs(nums, i, res, path):
            res.append(copy.deepcopy(path))
            for j in range(i, len(nums)):
                if j != i and nums[j] == nums[j - 1]:
                    continue
                path.append(nums[j])
                dfs(nums, j + 1, res, path)
                path.pop()
        res, path = [], []
        nums.sort()
        dfs(nums, 0, res, path)
        return res
```

### **Java**

<!-- 这里可写当前语言的特殊实现逻辑 -->

```java
class Solution {
    public List<List<Integer>> subsetsWithDup(int[] nums) {
        List<Integer> path = new ArrayList<>();
        List<List<Integer>> res = new ArrayList<>();
        Arrays.sort(nums);
        dfs(nums, 0, res, path);
        return res;
    }

    private void dfs(int[] nums, int i, List<List<Integer>> res, List<Integer> path) {
        res.add(new ArrayList<>(path));
        for (int j = i; j < nums.length; ++j) {
            if (j != i && nums[j] == nums[j - 1]) {
                continue;
            }
            path.add(nums[j]);
            dfs(nums, i + 1, res, path);
            path.remove(path.size() - 1);
        }
    }
}
```

### **...**

```

```

<!-- tabs:end -->