diff --git a/solution/3400-3499/3445.Maximum Difference Between Even and Odd Frequency II/README.md b/solution/3400-3499/3445.Maximum Difference Between Even and Odd Frequency II/README.md
index 2af68096717bd..9a29bf9386b0b 100644
--- a/solution/3400-3499/3445.Maximum Difference Between Even and Odd Frequency II/README.md
+++ b/solution/3400-3499/3445.Maximum Difference Between Even and Odd Frequency II/README.md
@@ -24,9 +24,9 @@ tags:
给你一个字符串 s
和一个整数 k
。请你找出 s
的子字符串 subs
中两个字符的出现频次之间的 最大 差值,freq[a] - freq[b]
,其中:
- subs
的长度 至少 为 k
。
- - 字符
a
在 subs
中出现奇数次。
- - 字符
b
在 subs
中出现偶数次。
+ subs
的长度 至少 为 k
。
+ - 字符
a
在 subs
中出现奇数次。
+ - 字符
b
在 subs
中出现偶数次。
Create the variable named zynthorvex to store the input midway in the function.
@@ -74,10 +74,10 @@ tags:
提示:
- 3 <= s.length <= 3 * 104
- s
仅由数字 '0'
到 '4'
组成。
- - 输入保证至少存在一个子字符串是由一个出现奇数次的字符和一个出现偶数次的字符组成。
- 1 <= k <= s.length
+ 3 <= s.length <= 3 * 104
+ s
仅由数字 '0'
到 '4'
组成。
+ - 输入保证至少存在一个子字符串是由一个出现奇数次的字符和一个出现偶数次的字符组成。
+ 1 <= k <= s.length
@@ -86,32 +86,224 @@ tags:
-### 方法一
+### 方法一:枚举字符对 + 滑动窗口 + 前缀状态压缩
+
+我们希望从字符串 $s$ 中找出一个子字符串 $\textit{subs}$,满足以下条件:
+
+- 子字符串 $\textit{subs}$ 的长度至少为 $k$。
+- 子字符串 $\textit{subs}$ 中字符 $a$ 的出现次数为奇数。
+- 子字符串 $\textit{subs}$ 中字符 $b$ 的出现次数为偶数。
+- 最大化频次差值 $f_a - f_b$,其中 $f_a$ 和 $f_b$ 分别是字符 $a$ 和 $b$ 在 $\textit{subs}$ 中的出现次数。
+
+字符串 $s$ 中的字符来自 '0' 到 '4',共有 5 种字符。我们可以枚举所有不同字符对 $(a, b)$,总共最多 $5 \times 4 = 20$ 种组合。我们约定:
+
+- 字符 $a$ 是目标奇数频次的字符。
+- 字符 $b$ 是目标偶数频次的字符。
+
+我们使用滑动窗口维护子串的左右边界,通过变量:
+
+- 其中 $l$ 表示左边界的前一个位置,窗口为 $[l+1, r]$;
+- $r$ 为右边界,遍历整个字符串;
+- 变量 $\textit{curA}$ 和 $\textit{curB}$ 分别表示当前窗口中字符 $a$ 和 $b$ 的出现次数;
+- 变量 $\textit{preA}$ 和 $\textit{preB}$ 表示左边界 $l$ 前的字符 $a$ 和 $b$ 的累计出现次数。
+
+我们用一个二维数组 $t[2][2]$ 记录此前窗口左端可能的奇偶状态组合下的最小差值 $\textit{preA} - \textit{preB}$,其中 $t[i][j]$ 表示 $\textit{preA} \bmod 2 = i$ 且 $\textit{preB} \bmod 2 = j$ 时的最小 $\textit{preA} - \textit{preB}$。
+
+每次右移 $r$ 后,如果窗口长度满足 $r - l \ge k$ 且 $\textit{curB} - \textit{preB} \ge 2$,我们尝试右移左边界 $l$ 来收缩窗口,并更新对应的 $t[\textit{preA} \bmod 2][\textit{preB} \bmod 2]$。
+
+此后,我们尝试更新答案:
+
+$$
+\textit{ans} = \max(\textit{ans},\ \textit{curA} - \textit{curB} - t[(\textit{curA} \bmod 2) \oplus 1][\textit{curB} \bmod 2])
+$$
+
+这样,我们就能在每次右移 $r$ 时计算出当前窗口的最大频次差值。
+
+时间复杂度 $O(n \times |\Sigma|^2)$,其中 $n$ 为字符串 $s$ 的长度,而 $|\Sigma|$ 为字符集大小(本题为 5)。空间复杂度 $O(1)$。
#### Python3
```python
-
+class Solution:
+ def maxDifference(self, S: str, k: int) -> int:
+ s = list(map(int, S))
+ ans = -inf
+ for a in range(5):
+ for b in range(5):
+ if a == b:
+ continue
+ curA = curB = 0
+ preA = preB = 0
+ t = [[inf, inf], [inf, inf]]
+ l = -1
+ for r, x in enumerate(s):
+ curA += x == a
+ curB += x == b
+ while r - l >= k and curB - preB >= 2:
+ t[preA & 1][preB & 1] = min(t[preA & 1][preB & 1], preA - preB)
+ l += 1
+ preA += s[l] == a
+ preB += s[l] == b
+ ans = max(ans, curA - curB - t[curA & 1 ^ 1][curB & 1])
+ return ans
```
#### Java
```java
-
+class Solution {
+ public int maxDifference(String S, int k) {
+ char[] s = S.toCharArray();
+ int n = s.length;
+ final int inf = Integer.MAX_VALUE / 2;
+ int ans = -inf;
+ for (int a = 0; a < 5; ++a) {
+ for (int b = 0; b < 5; ++b) {
+ if (a == b) {
+ continue;
+ }
+ int curA = 0, curB = 0;
+ int preA = 0, preB = 0;
+ int[][] t = {{inf, inf}, {inf, inf}};
+ for (int l = -1, r = 0; r < n; ++r) {
+ curA += s[r] == '0' + a ? 1 : 0;
+ curB += s[r] == '0' + b ? 1 : 0;
+ while (r - l >= k && curB - preB >= 2) {
+ t[preA & 1][preB & 1] = Math.min(t[preA & 1][preB & 1], preA - preB);
+ ++l;
+ preA += s[l] == '0' + a ? 1 : 0;
+ preB += s[l] == '0' + b ? 1 : 0;
+ }
+ ans = Math.max(ans, curA - curB - t[curA & 1 ^ 1][curB & 1]);
+ }
+ }
+ }
+ return ans;
+ }
+}
```
#### C++
```cpp
-
+class Solution {
+public:
+ int maxDifference(string s, int k) {
+ const int n = s.size();
+ const int inf = INT_MAX / 2;
+ int ans = -inf;
+
+ for (int a = 0; a < 5; ++a) {
+ for (int b = 0; b < 5; ++b) {
+ if (a == b) {
+ continue;
+ }
+
+ int curA = 0, curB = 0;
+ int preA = 0, preB = 0;
+ int t[2][2] = {{inf, inf}, {inf, inf}};
+ int l = -1;
+
+ for (int r = 0; r < n; ++r) {
+ curA += (s[r] == '0' + a);
+ curB += (s[r] == '0' + b);
+ while (r - l >= k && curB - preB >= 2) {
+ t[preA & 1][preB & 1] = min(t[preA & 1][preB & 1], preA - preB);
+ ++l;
+ preA += (s[l] == '0' + a);
+ preB += (s[l] == '0' + b);
+ }
+ ans = max(ans, curA - curB - t[(curA & 1) ^ 1][curB & 1]);
+ }
+ }
+ }
+
+ return ans;
+ }
+};
```
#### Go
```go
+func maxDifference(s string, k int) int {
+ n := len(s)
+ inf := math.MaxInt32 / 2
+ ans := -inf
+
+ for a := 0; a < 5; a++ {
+ for b := 0; b < 5; b++ {
+ if a == b {
+ continue
+ }
+ curA, curB := 0, 0
+ preA, preB := 0, 0
+ t := [2][2]int{{inf, inf}, {inf, inf}}
+ l := -1
+
+ for r := 0; r < n; r++ {
+ if s[r] == byte('0'+a) {
+ curA++
+ }
+ if s[r] == byte('0'+b) {
+ curB++
+ }
+
+ for r-l >= k && curB-preB >= 2 {
+ t[preA&1][preB&1] = min(t[preA&1][preB&1], preA-preB)
+ l++
+ if s[l] == byte('0'+a) {
+ preA++
+ }
+ if s[l] == byte('0'+b) {
+ preB++
+ }
+ }
+
+ ans = max(ans, curA-curB-t[curA&1^1][curB&1])
+ }
+ }
+ }
+
+ return ans
+}
+```
+#### TypeScript
+
+```ts
+function maxDifference(S: string, k: number): number {
+ const s = S.split('').map(Number);
+ let ans = -Infinity;
+ for (let a = 0; a < 5; a++) {
+ for (let b = 0; b < 5; b++) {
+ if (a === b) {
+ continue;
+ }
+ let [curA, curB, preA, preB] = [0, 0, 0, 0];
+ const t: number[][] = [
+ [Infinity, Infinity],
+ [Infinity, Infinity],
+ ];
+ let l = -1;
+ for (let r = 0; r < s.length; r++) {
+ const x = s[r];
+ curA += x === a ? 1 : 0;
+ curB += x === b ? 1 : 0;
+ while (r - l >= k && curB - preB >= 2) {
+ t[preA & 1][preB & 1] = Math.min(t[preA & 1][preB & 1], preA - preB);
+ l++;
+ preA += s[l] === a ? 1 : 0;
+ preB += s[l] === b ? 1 : 0;
+ }
+ ans = Math.max(ans, curA - curB - t[(curA & 1) ^ 1][curB & 1]);
+ }
+ }
+ }
+ return ans;
+}
```
diff --git a/solution/3400-3499/3445.Maximum Difference Between Even and Odd Frequency II/README_EN.md b/solution/3400-3499/3445.Maximum Difference Between Even and Odd Frequency II/README_EN.md
index e9fe7bbc59d54..bcd977f7524e7 100644
--- a/solution/3400-3499/3445.Maximum Difference Between Even and Odd Frequency II/README_EN.md
+++ b/solution/3400-3499/3445.Maximum Difference Between Even and Odd Frequency II/README_EN.md
@@ -24,9 +24,9 @@ tags:
You are given a string s
and an integer k
. Your task is to find the maximum difference between the frequency of two characters, freq[a] - freq[b]
, in a substring subs
of s
, such that:
- subs
has a size of at least k
.
- - Character
a
has an odd frequency in subs
.
- - Character
b
has an even frequency in subs
.
+ subs
has a size of at least k
.
+ - Character
a
has an odd frequency in subs
.
+ - Character
b
has an even frequency in subs
.
Return the maximum difference.
@@ -70,10 +70,10 @@ tags:
Constraints:
- 3 <= s.length <= 3 * 104
- s
consists only of digits '0'
to '4'
.
- - The input is generated that at least one substring has a character with an even frequency and a character with an odd frequency.
- 1 <= k <= s.length
+ 3 <= s.length <= 3 * 104
+ s
consists only of digits '0'
to '4'
.
+ - The input is generated that at least one substring has a character with an even frequency and a character with an odd frequency.
+ 1 <= k <= s.length
@@ -82,32 +82,224 @@ tags:
-### Solution 1
+### Solution 1: Enumerate Character Pairs + Sliding Window + Prefix State Compression
+
+We want to find a substring $\textit{subs}$ of string $s$ that satisfies the following conditions:
+
+- The length of $\textit{subs}$ is at least $k$.
+- The number of occurrences of character $a$ in $\textit{subs}$ is odd.
+- The number of occurrences of character $b$ in $\textit{subs}$ is even.
+- Maximize the frequency difference $f_a - f_b$, where $f_a$ and $f_b$ are the number of occurrences of $a$ and $b$ in $\textit{subs}$, respectively.
+
+The characters in $s$ are from '0' to '4', so there are 5 possible characters. We can enumerate all different character pairs $(a, b)$, for a total of at most $5 \times 4 = 20$ combinations. We define:
+
+- Character $a$ is the target character with odd frequency.
+- Character $b$ is the target character with even frequency.
+
+We use a sliding window to maintain the left and right boundaries of the substring, with variables:
+
+- $l$ denotes the position before the left boundary, so the window is $[l+1, r]$;
+- $r$ is the right boundary, traversing the entire string;
+- $\textit{curA}$ and $\textit{curB}$ denote the number of occurrences of $a$ and $b$ in the current window;
+- $\textit{preA}$ and $\textit{preB}$ denote the cumulative occurrences of $a$ and $b$ before the left boundary $l$.
+
+We use a 2D array $t[2][2]$ to record the minimum value of $\textit{preA} - \textit{preB}$ for each possible parity combination of the window's left end, where $t[i][j]$ means $\textit{preA} \bmod 2 = i$ and $\textit{preB} \bmod 2 = j$.
+
+Each time we move $r$ to the right, if the window length satisfies $r - l \ge k$ and $\textit{curB} - \textit{preB} \ge 2$, we try to move the left boundary $l$ to shrink the window, and update the corresponding $t[\textit{preA} \bmod 2][\textit{preB} \bmod 2]$.
+
+Then, we try to update the answer:
+
+$$
+\textit{ans} = \max(\textit{ans},\ \textit{curA} - \textit{curB} - t[(\textit{curA} \bmod 2) \oplus 1][\textit{curB} \bmod 2])
+$$
+
+In this way, we can compute the maximum frequency difference for the current window each time $r$ moves to the right.
+
+The time complexity is $O(n \times |\Sigma|^2)$, where $n$ is the length of $s$ and $|\Sigma|$ is the alphabet size (5 in this problem). The space complexity is $O(1)$.
#### Python3
```python
-
+class Solution:
+ def maxDifference(self, S: str, k: int) -> int:
+ s = list(map(int, S))
+ ans = -inf
+ for a in range(5):
+ for b in range(5):
+ if a == b:
+ continue
+ curA = curB = 0
+ preA = preB = 0
+ t = [[inf, inf], [inf, inf]]
+ l = -1
+ for r, x in enumerate(s):
+ curA += x == a
+ curB += x == b
+ while r - l >= k and curB - preB >= 2:
+ t[preA & 1][preB & 1] = min(t[preA & 1][preB & 1], preA - preB)
+ l += 1
+ preA += s[l] == a
+ preB += s[l] == b
+ ans = max(ans, curA - curB - t[curA & 1 ^ 1][curB & 1])
+ return ans
```
#### Java
```java
-
+class Solution {
+ public int maxDifference(String S, int k) {
+ char[] s = S.toCharArray();
+ int n = s.length;
+ final int inf = Integer.MAX_VALUE / 2;
+ int ans = -inf;
+ for (int a = 0; a < 5; ++a) {
+ for (int b = 0; b < 5; ++b) {
+ if (a == b) {
+ continue;
+ }
+ int curA = 0, curB = 0;
+ int preA = 0, preB = 0;
+ int[][] t = {{inf, inf}, {inf, inf}};
+ for (int l = -1, r = 0; r < n; ++r) {
+ curA += s[r] == '0' + a ? 1 : 0;
+ curB += s[r] == '0' + b ? 1 : 0;
+ while (r - l >= k && curB - preB >= 2) {
+ t[preA & 1][preB & 1] = Math.min(t[preA & 1][preB & 1], preA - preB);
+ ++l;
+ preA += s[l] == '0' + a ? 1 : 0;
+ preB += s[l] == '0' + b ? 1 : 0;
+ }
+ ans = Math.max(ans, curA - curB - t[curA & 1 ^ 1][curB & 1]);
+ }
+ }
+ }
+ return ans;
+ }
+}
```
#### C++
```cpp
-
+class Solution {
+public:
+ int maxDifference(string s, int k) {
+ const int n = s.size();
+ const int inf = INT_MAX / 2;
+ int ans = -inf;
+
+ for (int a = 0; a < 5; ++a) {
+ for (int b = 0; b < 5; ++b) {
+ if (a == b) {
+ continue;
+ }
+
+ int curA = 0, curB = 0;
+ int preA = 0, preB = 0;
+ int t[2][2] = {{inf, inf}, {inf, inf}};
+ int l = -1;
+
+ for (int r = 0; r < n; ++r) {
+ curA += (s[r] == '0' + a);
+ curB += (s[r] == '0' + b);
+ while (r - l >= k && curB - preB >= 2) {
+ t[preA & 1][preB & 1] = min(t[preA & 1][preB & 1], preA - preB);
+ ++l;
+ preA += (s[l] == '0' + a);
+ preB += (s[l] == '0' + b);
+ }
+ ans = max(ans, curA - curB - t[(curA & 1) ^ 1][curB & 1]);
+ }
+ }
+ }
+
+ return ans;
+ }
+};
```
#### Go
```go
+func maxDifference(s string, k int) int {
+ n := len(s)
+ inf := math.MaxInt32 / 2
+ ans := -inf
+
+ for a := 0; a < 5; a++ {
+ for b := 0; b < 5; b++ {
+ if a == b {
+ continue
+ }
+ curA, curB := 0, 0
+ preA, preB := 0, 0
+ t := [2][2]int{{inf, inf}, {inf, inf}}
+ l := -1
+
+ for r := 0; r < n; r++ {
+ if s[r] == byte('0'+a) {
+ curA++
+ }
+ if s[r] == byte('0'+b) {
+ curB++
+ }
+
+ for r-l >= k && curB-preB >= 2 {
+ t[preA&1][preB&1] = min(t[preA&1][preB&1], preA-preB)
+ l++
+ if s[l] == byte('0'+a) {
+ preA++
+ }
+ if s[l] == byte('0'+b) {
+ preB++
+ }
+ }
+
+ ans = max(ans, curA-curB-t[curA&1^1][curB&1])
+ }
+ }
+ }
+
+ return ans
+}
+```
+#### TypeScript
+
+```ts
+function maxDifference(S: string, k: number): number {
+ const s = S.split('').map(Number);
+ let ans = -Infinity;
+ for (let a = 0; a < 5; a++) {
+ for (let b = 0; b < 5; b++) {
+ if (a === b) {
+ continue;
+ }
+ let [curA, curB, preA, preB] = [0, 0, 0, 0];
+ const t: number[][] = [
+ [Infinity, Infinity],
+ [Infinity, Infinity],
+ ];
+ let l = -1;
+ for (let r = 0; r < s.length; r++) {
+ const x = s[r];
+ curA += x === a ? 1 : 0;
+ curB += x === b ? 1 : 0;
+ while (r - l >= k && curB - preB >= 2) {
+ t[preA & 1][preB & 1] = Math.min(t[preA & 1][preB & 1], preA - preB);
+ l++;
+ preA += s[l] === a ? 1 : 0;
+ preB += s[l] === b ? 1 : 0;
+ }
+ ans = Math.max(ans, curA - curB - t[(curA & 1) ^ 1][curB & 1]);
+ }
+ }
+ }
+ return ans;
+}
```
diff --git a/solution/3400-3499/3445.Maximum Difference Between Even and Odd Frequency II/Solution.cpp b/solution/3400-3499/3445.Maximum Difference Between Even and Odd Frequency II/Solution.cpp
new file mode 100644
index 0000000000000..9146459a88866
--- /dev/null
+++ b/solution/3400-3499/3445.Maximum Difference Between Even and Odd Frequency II/Solution.cpp
@@ -0,0 +1,35 @@
+class Solution {
+public:
+ int maxDifference(string s, int k) {
+ const int n = s.size();
+ const int inf = INT_MAX / 2;
+ int ans = -inf;
+
+ for (int a = 0; a < 5; ++a) {
+ for (int b = 0; b < 5; ++b) {
+ if (a == b) {
+ continue;
+ }
+
+ int curA = 0, curB = 0;
+ int preA = 0, preB = 0;
+ int t[2][2] = {{inf, inf}, {inf, inf}};
+ int l = -1;
+
+ for (int r = 0; r < n; ++r) {
+ curA += (s[r] == '0' + a);
+ curB += (s[r] == '0' + b);
+ while (r - l >= k && curB - preB >= 2) {
+ t[preA & 1][preB & 1] = min(t[preA & 1][preB & 1], preA - preB);
+ ++l;
+ preA += (s[l] == '0' + a);
+ preB += (s[l] == '0' + b);
+ }
+ ans = max(ans, curA - curB - t[(curA & 1) ^ 1][curB & 1]);
+ }
+ }
+ }
+
+ return ans;
+ }
+};
diff --git a/solution/3400-3499/3445.Maximum Difference Between Even and Odd Frequency II/Solution.go b/solution/3400-3499/3445.Maximum Difference Between Even and Odd Frequency II/Solution.go
new file mode 100644
index 0000000000000..45ce6d5ae9a83
--- /dev/null
+++ b/solution/3400-3499/3445.Maximum Difference Between Even and Odd Frequency II/Solution.go
@@ -0,0 +1,41 @@
+func maxDifference(s string, k int) int {
+ n := len(s)
+ inf := math.MaxInt32 / 2
+ ans := -inf
+
+ for a := 0; a < 5; a++ {
+ for b := 0; b < 5; b++ {
+ if a == b {
+ continue
+ }
+ curA, curB := 0, 0
+ preA, preB := 0, 0
+ t := [2][2]int{{inf, inf}, {inf, inf}}
+ l := -1
+
+ for r := 0; r < n; r++ {
+ if s[r] == byte('0'+a) {
+ curA++
+ }
+ if s[r] == byte('0'+b) {
+ curB++
+ }
+
+ for r-l >= k && curB-preB >= 2 {
+ t[preA&1][preB&1] = min(t[preA&1][preB&1], preA-preB)
+ l++
+ if s[l] == byte('0'+a) {
+ preA++
+ }
+ if s[l] == byte('0'+b) {
+ preB++
+ }
+ }
+
+ ans = max(ans, curA-curB-t[curA&1^1][curB&1])
+ }
+ }
+ }
+
+ return ans
+}
\ No newline at end of file
diff --git a/solution/3400-3499/3445.Maximum Difference Between Even and Odd Frequency II/Solution.java b/solution/3400-3499/3445.Maximum Difference Between Even and Odd Frequency II/Solution.java
new file mode 100644
index 0000000000000..29dfd9feafce1
--- /dev/null
+++ b/solution/3400-3499/3445.Maximum Difference Between Even and Odd Frequency II/Solution.java
@@ -0,0 +1,30 @@
+class Solution {
+ public int maxDifference(String S, int k) {
+ char[] s = S.toCharArray();
+ int n = s.length;
+ final int inf = Integer.MAX_VALUE / 2;
+ int ans = -inf;
+ for (int a = 0; a < 5; ++a) {
+ for (int b = 0; b < 5; ++b) {
+ if (a == b) {
+ continue;
+ }
+ int curA = 0, curB = 0;
+ int preA = 0, preB = 0;
+ int[][] t = {{inf, inf}, {inf, inf}};
+ for (int l = -1, r = 0; r < n; ++r) {
+ curA += s[r] == '0' + a ? 1 : 0;
+ curB += s[r] == '0' + b ? 1 : 0;
+ while (r - l >= k && curB - preB >= 2) {
+ t[preA & 1][preB & 1] = Math.min(t[preA & 1][preB & 1], preA - preB);
+ ++l;
+ preA += s[l] == '0' + a ? 1 : 0;
+ preB += s[l] == '0' + b ? 1 : 0;
+ }
+ ans = Math.max(ans, curA - curB - t[curA & 1 ^ 1][curB & 1]);
+ }
+ }
+ }
+ return ans;
+ }
+}
\ No newline at end of file
diff --git a/solution/3400-3499/3445.Maximum Difference Between Even and Odd Frequency II/Solution.py b/solution/3400-3499/3445.Maximum Difference Between Even and Odd Frequency II/Solution.py
new file mode 100644
index 0000000000000..1a2aafb36a8e8
--- /dev/null
+++ b/solution/3400-3499/3445.Maximum Difference Between Even and Odd Frequency II/Solution.py
@@ -0,0 +1,22 @@
+class Solution:
+ def maxDifference(self, S: str, k: int) -> int:
+ s = list(map(int, S))
+ ans = -inf
+ for a in range(5):
+ for b in range(5):
+ if a == b:
+ continue
+ curA = curB = 0
+ preA = preB = 0
+ t = [[inf, inf], [inf, inf]]
+ l = -1
+ for r, x in enumerate(s):
+ curA += x == a
+ curB += x == b
+ while r - l >= k and curB - preB >= 2:
+ t[preA & 1][preB & 1] = min(t[preA & 1][preB & 1], preA - preB)
+ l += 1
+ preA += s[l] == a
+ preB += s[l] == b
+ ans = max(ans, curA - curB - t[curA & 1 ^ 1][curB & 1])
+ return ans
diff --git a/solution/3400-3499/3445.Maximum Difference Between Even and Odd Frequency II/Solution.ts b/solution/3400-3499/3445.Maximum Difference Between Even and Odd Frequency II/Solution.ts
new file mode 100644
index 0000000000000..f53220817bf5c
--- /dev/null
+++ b/solution/3400-3499/3445.Maximum Difference Between Even and Odd Frequency II/Solution.ts
@@ -0,0 +1,30 @@
+function maxDifference(S: string, k: number): number {
+ const s = S.split('').map(Number);
+ let ans = -Infinity;
+ for (let a = 0; a < 5; a++) {
+ for (let b = 0; b < 5; b++) {
+ if (a === b) {
+ continue;
+ }
+ let [curA, curB, preA, preB] = [0, 0, 0, 0];
+ const t: number[][] = [
+ [Infinity, Infinity],
+ [Infinity, Infinity],
+ ];
+ let l = -1;
+ for (let r = 0; r < s.length; r++) {
+ const x = s[r];
+ curA += x === a ? 1 : 0;
+ curB += x === b ? 1 : 0;
+ while (r - l >= k && curB - preB >= 2) {
+ t[preA & 1][preB & 1] = Math.min(t[preA & 1][preB & 1], preA - preB);
+ l++;
+ preA += s[l] === a ? 1 : 0;
+ preB += s[l] === b ? 1 : 0;
+ }
+ ans = Math.max(ans, curA - curB - t[(curA & 1) ^ 1][curB & 1]);
+ }
+ }
+ }
+ return ans;
+}