diff --git a/.github/workflows/sync.yml b/.github/workflows/sync.yml new file mode 100644 index 0000000000000..4ba27fe009ff3 --- /dev/null +++ b/.github/workflows/sync.yml @@ -0,0 +1,26 @@ +name: Sync + +on: + push: + branches: [ main ] + +jobs: + sync: + runs-on: ubuntu-latest + if: github.repository == 'doocs/leetcode' + steps: + - name: Sync to gitee.com + uses: wearerequired/git-mirror-action@master + env: + SSH_PRIVATE_KEY: ${{ secrets.RSA_PRIVATE_KEY }} + with: + source-repo: git@github.com:doocs/leetcode.git + destination-repo: git@gitee.com:Doocs/leetcode.git + + - name: Build Gitee Pages + uses: yanglbme/gitee-pages-action@main + with: + gitee-username: yanglbme + gitee-password: ${{ secrets.GITEE_PASSWORD }} + gitee-repo: doocs/leetcode + branch: main \ No newline at end of file diff --git a/solution/2800-2899/2877.Create a DataFrame from List/README.md b/solution/2800-2899/2877.Create a DataFrame from List/README.md index 07ea116074b6d..613e740a9d9ea 100644 --- a/solution/2800-2899/2877.Create a DataFrame from List/README.md +++ b/solution/2800-2899/2877.Create a DataFrame from List/README.md @@ -1,4 +1,4 @@ -# [2877. Create a DataFrame from List](https://leetcode.cn/problems/create-a-dataframe-from-list) +# [2877. 从表中创建 DataFrame](https://leetcode.cn/problems/create-a-dataframe-from-list) [English Version](/solution/2800-2899/2877.Create%20a%20DataFrame%20from%20List/README_EN.md) @@ -6,17 +6,18 @@ -

Write a solution to create a DataFrame from a 2D list called student_data. This 2D list contains the IDs and ages of some students.

+

编写一个解决方案,从名为  student_data 的二维列表 创建 一个 DataFrame 。这个二维列表包含一些学生的 ID 和年龄信息。

-

The DataFrame should have two columns, student_id and age, and be in the same order as the original 2D list.

+

DataFrame 应该有两列, student_id 和 age,并且与原始二维列表的顺序相同。

-

The result format is in the following example.

+

返回结果格式如下示例所示。

 

-

Example 1:

+ +

示例 1:

-Input:
+输入:
 student_data:
 [
   [1, 15],
@@ -24,7 +25,7 @@
   [3, 11],
   [4, 20]
 ]
-Output:
+输出:
 +------------+-----+
 | student_id | age |
 +------------+-----+
@@ -33,8 +34,8 @@
 | 3          | 11  |
 | 4          | 20  |
 +------------+-----+
-Explanation:
-A DataFrame was created on top of student_data, with two columns named student_id and age.
+解释:
+在 student_data 上创建了一个 DataFrame,包含 student_id 和 age 两列。
 
## 解法 diff --git a/solution/2800-2899/2881.Create a New Column/README.md b/solution/2800-2899/2881.Create a New Column/README.md index 5cfda03c8e079..f821932e9de3c 100644 --- a/solution/2800-2899/2881.Create a New Column/README.md +++ b/solution/2800-2899/2881.Create a New Column/README.md @@ -1,4 +1,4 @@ -# [2881. Create a New Column](https://leetcode.cn/problems/create-a-new-column) +# [2881. 创建新列](https://leetcode.cn/problems/create-a-new-column) [English Version](/solution/2800-2899/2881.Create%20a%20New%20Column/README_EN.md) @@ -16,17 +16,18 @@ DataFrame employees +-------------+--------+ -

A company plans to provide its employees with a bonus.

+

一家公司计划为员工提供奖金。

-

Write a solution to create a new column name bonus that contains the doubled values of the salary column.

+

编写一个解决方案,创建一个名为 bonus 的新列,其中包含 salary 值的 两倍

-

The result format is in the following example.

+

返回结果格式如下示例所示。

 

-

Example 1:

+ +

示例 1:

-Input:
+输入:
 DataFrame employees
 +---------+--------+
 | name    | salary |
@@ -38,7 +39,7 @@ DataFrame employees
 | Finn    | 74576  |
 | Thomas  | 24433  |
 +---------+--------+
-Output:
+输出:
 +---------+--------+--------+
 | name    | salary | bonus  |
 +---------+--------+--------+
@@ -49,8 +50,8 @@ DataFrame employees
 | Finn    | 74576  | 149152 |
 | Thomas  | 24433  | 48866  |
 +---------+--------+--------+
-Explanation: 
-A new column bonus is created by doubling the value in the column salary.
+解释: +通过将salary列中的值加倍创建了一个新的bonus列。 ## 解法 diff --git a/solution/2800-2899/2882.Drop Duplicate Rows/README.md b/solution/2800-2899/2882.Drop Duplicate Rows/README.md index d814b83dd967d..31449ae09a621 100644 --- a/solution/2800-2899/2882.Drop Duplicate Rows/README.md +++ b/solution/2800-2899/2882.Drop Duplicate Rows/README.md @@ -1,4 +1,4 @@ -# [2882. Drop Duplicate Rows](https://leetcode.cn/problems/drop-duplicate-rows) +# [2882. 删去重复的行](https://leetcode.cn/problems/drop-duplicate-rows) [English Version](/solution/2800-2899/2882.Drop%20Duplicate%20Rows/README_EN.md) @@ -17,16 +17,18 @@ DataFrame customers +-------------+--------+ -

There are some duplicate rows in the DataFrame based on the email column.

+

在 DataFrame 中基于 email 列存在一些重复行。

-

Write a solution to remove these duplicate rows and keep only the first occurrence.

+

编写一个解决方案,删除这些重复行,仅保留第一次出现的行。

-

The result format is in the following example.

+

返回结果格式如下例所示。

 

+ +

示例 1:

+
-Example 1:
-Input:
+输入:
 +-------------+---------+---------------------+
 | customer_id | name    | email               |
 +-------------+---------+---------------------+
@@ -37,7 +39,7 @@ DataFrame customers
 | 5           | Finn    | john@example.com    |
 | 6           | Violet  | alice@example.com   |
 +-------------+---------+---------------------+
-Output:  
+输出:
 +-------------+---------+---------------------+
 | customer_id | name    | email               |
 +-------------+---------+---------------------+
@@ -47,8 +49,8 @@ DataFrame customers
 | 4           | Alice   | john@example.com    |
 | 6           | Violet  | alice@example.com   |
 +-------------+---------+---------------------+
-Explanation:
-Alic (customer_id = 4) and Finn (customer_id = 5) both use john@example.com, so only the first occurrence of this email is retained.
+解释:
+Alice (customer_id = 4) 和 Finn (customer_id = 5) 都使用 john@example.com,因此只保留该邮箱地址的第一次出现。
 
## 解法 diff --git a/solution/2800-2899/2883.Drop Missing Data/README.md b/solution/2800-2899/2883.Drop Missing Data/README.md index d72fe70296c77..c8e58e06cb506 100644 --- a/solution/2800-2899/2883.Drop Missing Data/README.md +++ b/solution/2800-2899/2883.Drop Missing Data/README.md @@ -1,4 +1,4 @@ -# [2883. Drop Missing Data](https://leetcode.cn/problems/drop-missing-data) +# [2883. 删去丢失的数据](https://leetcode.cn/problems/drop-missing-data) [English Version](/solution/2800-2899/2883.Drop%20Missing%20Data/README_EN.md) @@ -17,17 +17,18 @@ DataFrame students +-------------+--------+ -

There are some rows having missing values in the name column.

+

name 列里有一些具有缺失值的行。

-

Write a solution to remove the rows with missing values.

+

编写一个解决方案,删除具有缺失值的行。

-

The result format is in the following example.

+

返回结果格式如下示例所示。

 

-

Example 1:

+ +

示例 1:

-Input:
+输入:
 +------------+-------+-----+
 | student_id | name  | age |
 +------------+-------+-----+
@@ -36,15 +37,15 @@ DataFrame students
 | 779        | None  | 20  |
 | 849        | None  | 14  |
 +------------+-------+-----+
-Output:
+输出:
 +------------+-------+-----+
 | student_id | name  | age |
 +------------+-------+-----+
 | 32         | Piper | 5   |
 | 217        | Grace | 19  |
 +------------+-------+-----+
-Explanation: 
-Students with ids 779 and 849 have empty values in the name column, so they will be removed.
+解释: +学号为 779 和 849 的学生所在行在 name 列中有空值,因此它们将被删除。 ## 解法 diff --git a/solution/2800-2899/2884.Modify Columns/README.md b/solution/2800-2899/2884.Modify Columns/README.md index c99f99b1c29d6..9c1016262c3a6 100644 --- a/solution/2800-2899/2884.Modify Columns/README.md +++ b/solution/2800-2899/2884.Modify Columns/README.md @@ -1,4 +1,4 @@ -# [2884. Modify Columns](https://leetcode.cn/problems/modify-columns) +# [2884. 修改列](https://leetcode.cn/problems/modify-columns) [English Version](/solution/2800-2899/2884.Modify%20Columns/README_EN.md) @@ -16,17 +16,18 @@ DataFrame employees +-------------+--------+ -

A company intends to give its employees a pay rise.

+

一家公司决定增加员工的薪水。

-

Write a solution to modify the salary column by multiplying each salary by 2.

+

编写一个解决方案,将每个员工的薪水乘以2来 修改 salary 列。

-

The result format is in the following example.

+

返回结果格式如下示例所示。

 

-

Example 1:

+ +

示例 1:

-Input:
+输入:
 DataFrame employees
 +---------+--------+
 | name    | salary |
@@ -36,7 +37,7 @@ DataFrame employees
 | Mia     | 62509  |
 | Ulysses | 54866  |
 +---------+--------+
-Output:
+输出:
 +---------+--------+
 | name    | salary |
 +---------+--------+
@@ -45,8 +46,8 @@ DataFrame employees
 | Mia     | 125018 |
 | Ulysses | 109732 |
 +---------+--------+
-Explanation:
-Every salary has been doubled.
+解释: +每个人的薪水都被加倍。 ## 解法 diff --git a/solution/2800-2899/2885.Rename Columns/README.md b/solution/2800-2899/2885.Rename Columns/README.md index b286bba85f5c7..5ae557f2c18b7 100644 --- a/solution/2800-2899/2885.Rename Columns/README.md +++ b/solution/2800-2899/2885.Rename Columns/README.md @@ -1,4 +1,4 @@ -# [2885. Rename Columns](https://leetcode.cn/problems/rename-columns) +# [2885. 重命名列](https://leetcode.cn/problems/rename-columns) [English Version](/solution/2800-2899/2885.Rename%20Columns/README_EN.md) @@ -18,21 +18,23 @@ DataFrame students +-------------+--------+ -

Write a solution to rename the columns as follows:

+

编写一个解决方案,按以下方式重命名列:

    -
  • id to student_id
  • -
  • first to first_name
  • -
  • last to last_name
  • -
  • age to age_in_years
  • +
  • id 重命名为 student_id
  • +
  • first 重命名为 first_name
  • +
  • last 重命名为 last_name
  • +
  • age 重命名为 age_in_years
-

The result format is in the following example.

+

返回结果格式如下示例所示。

 

+ +

示例 1:

+
-Example 1:
-Input:
+输入:
 +----+---------+----------+-----+
 | id | first   | last     | age |
 +----+---------+----------+-----+
@@ -42,7 +44,7 @@ DataFrame students
 | 4  | Georgia | Thompson | 18  |
 | 5  | Thomas  | Moore    | 10  |
 +----+---------+----------+-----+
-Output:
+输出:
 +------------+------------+-----------+--------------+
 | student_id | first_name | last_name | age_in_years |
 +------------+------------+-----------+--------------+
@@ -52,8 +54,8 @@ DataFrame students
 | 4          | Georgia    | Thompson  | 18           |
 | 5          | Thomas     | Moore     | 10           |
 +------------+------------+-----------+--------------+
-Explanation: 
-The column names are changed accordingly.
+解释: +列名已相应更换。 ## 解法 diff --git a/solution/2800-2899/2886.Change Data Type/README.md b/solution/2800-2899/2886.Change Data Type/README.md index fe1df64984ed8..04590adcbe6a2 100644 --- a/solution/2800-2899/2886.Change Data Type/README.md +++ b/solution/2800-2899/2886.Change Data Type/README.md @@ -1,4 +1,4 @@ -# [2886. Change Data Type](https://leetcode.cn/problems/change-data-type) +# [2886. 改变数据类型](https://leetcode.cn/problems/change-data-type) [English Version](/solution/2800-2899/2886.Change%20Data%20Type/README_EN.md) @@ -18,16 +18,18 @@ DataFrame students +-------------+--------+ -

Write a solution to correct the errors:

+

编写一个解决方案来纠正以下错误:

-

The grade column is stored as floats, convert it to integers.

+

 grade 列被存储为浮点数,将它转换为整数。

-

The result format is in the following example.

+

返回结果格式如下示例所示。

 

+ +

示例 1:

+
-Example 1:
-Input:
+输入:
 DataFrame students:
 +------------+------+-----+-------+
 | student_id | name | age | grade |
@@ -35,15 +37,15 @@ DataFrame students
 | 1          | Ava  | 6   | 73.0  |
 | 2          | Kate | 15  | 87.0  |
 +------------+------+-----+-------+
-Output:
+输出:
 +------------+------+-----+-------+
 | student_id | name | age | grade |
 +------------+------+-----+-------+
 | 1          | Ava  | 6   | 73    |
 | 2          | Kate | 15  | 87    |
 +------------+------+-----+-------+
-Explanation: 
-The data types of the column grade is converted to int.
+解释: +grade 列的数据类型已转换为整数。 ## 解法 diff --git a/solution/2800-2899/2887.Fill Missing Data/README.md b/solution/2800-2899/2887.Fill Missing Data/README.md index 61ef8f6ca9d6b..a7b8208a984ee 100644 --- a/solution/2800-2899/2887.Fill Missing Data/README.md +++ b/solution/2800-2899/2887.Fill Missing Data/README.md @@ -1,4 +1,4 @@ -# [2887. Fill Missing Data](https://leetcode.cn/problems/fill-missing-data) +# [2887. 填充缺失值](https://leetcode.cn/problems/fill-missing-data) [English Version](/solution/2800-2899/2887.Fill%20Missing%20Data/README_EN.md) @@ -17,14 +17,16 @@ DataFrame products +-------------+--------+ -

Write a solution to fill in the missing value as 0 in the quantity column.

+

编写一个解决方案,在 quantity 列中将缺失的值填充为 0

-

The result format is in the following example.

+

返回结果如下示例所示。

 

+示例 1: +
-Example 1:
-Input:+-----------------+----------+-------+
+输入:
++-----------------+----------+-------+
 | name            | quantity | price |
 +-----------------+----------+-------+
 | Wristwatch      | 32       | 135   |
@@ -32,7 +34,7 @@ DataFrame products
 | GolfClubs       | None     | 9319  |
 | Printer         | 849      | 3051  |
 +-----------------+----------+-------+
-Output:
+输出:
 +-----------------+----------+-------+
 | name            | quantity | price |
 +-----------------+----------+-------+
@@ -41,8 +43,8 @@ DataFrame products
 | GolfClubs       | 0        | 9319  |
 | Printer         | 849      | 3051  |
 +-----------------+----------+-------+
-Explanation: 
-The quantity for Toaster and Headphones are filled by 0.
+解释: +Toaster 和 Headphones 的数量被填充为 0。 ## 解法 diff --git a/solution/2800-2899/2888.Reshape Data Concatenate/README.md b/solution/2800-2899/2888.Reshape Data Concatenate/README.md index 55d95d79435c7..9a92f343be194 100644 --- a/solution/2800-2899/2888.Reshape Data Concatenate/README.md +++ b/solution/2800-2899/2888.Reshape Data Concatenate/README.md @@ -1,4 +1,4 @@ -# [2888. Reshape Data Concatenate](https://leetcode.cn/problems/reshape-data-concatenate) +# [2888. 重塑数据:连结](https://leetcode.cn/problems/reshape-data-concatenate) [English Version](/solution/2800-2899/2888.Reshape%20Data%20Concatenate/README_EN.md) @@ -27,15 +27,16 @@ DataFrame df2 -

Write a solution to concatenate these two DataFrames vertically into one DataFrame.

+

编写一个解决方案,将两个 DataFrames 垂直 连接成一个 DataFrame。

-

The result format is in the following example.

+

结果格式如下示例所示。

 

-

Example 1:

+ +

示例 1:

-Input:
+输入:
 df1
 +------------+---------+-----+
 | student_id | name    | age |
@@ -52,7 +53,7 @@ df1
 | 5          | Leo  | 7   |
 | 6          | Alex | 7   |
 +------------+------+-----+
-Output:
+输出:
 +------------+---------+-----+
 | student_id | name    | age |
 +------------+---------+-----+
@@ -63,8 +64,8 @@ df1
 | 5          | Leo     | 7   |
 | 6          | Alex    | 7   |
 +------------+---------+-----+
-Explanation:
-The two DataFramess are stacked vertically, and their rows are combined.
+解释: +两个 DataFrame 被垂直堆叠,它们的行被合并。 ## 解法 diff --git a/solution/2800-2899/2890.Reshape Data Melt/README.md b/solution/2800-2899/2890.Reshape Data Melt/README.md index 53969a78ce91f..82ca982935c38 100644 --- a/solution/2800-2899/2890.Reshape Data Melt/README.md +++ b/solution/2800-2899/2890.Reshape Data Melt/README.md @@ -1,4 +1,4 @@ -# [2890. Reshape Data Melt](https://leetcode.cn/problems/reshape-data-melt) +# [2890. 重塑数据:融合](https://leetcode.cn/problems/reshape-data-melt) [English Version](/solution/2800-2899/2890.Reshape%20Data%20Melt/README_EN.md) @@ -19,22 +19,23 @@ DataFrame report +-------------+--------+ -

Write a solution to reshape the data so that each row represents sales data for a product in a specific quarter.

+

编写一个解决方案,将数据 重塑 成每一行表示特定季度产品销售数据的形式。

-

The result format is in the following example.

+

结果格式如下例所示:

 

-

Example 1:

+ +

示例 1:

-Input:
+输入:
 +-------------+-----------+-----------+-----------+-----------+
 | product     | quarter_1 | quarter_2 | quarter_3 | quarter_4 |
 +-------------+-----------+-----------+-----------+-----------+
 | Umbrella    | 417       | 224       | 379       | 611       |
 | SleepingBag | 800       | 936       | 93        | 875       |
 +-------------+-----------+-----------+-----------+-----------+
-Output:
+输出:
 +-------------+-----------+-------+
 | product     | quarter   | sales |
 +-------------+-----------+-------+
@@ -47,8 +48,8 @@ DataFrame report
 | Umbrella    | quarter_4 | 611   |
 | SleepingBag | quarter_4 | 875   |
 +-------------+-----------+-------+
-Explanation:
-The DataFrame is reshaped from wide to long format. Each row represents the sales of a product in a quarter.
+解释:
+DataFrame 已从宽格式重塑为长格式。每一行表示一个季度内产品的销售情况。
 
## 解法 diff --git a/solution/2800-2899/2892.Minimizing Array After Replacing Pairs With Their Product/README.md b/solution/2800-2899/2892.Minimizing Array After Replacing Pairs With Their Product/README.md index 21fee14a7e0a9..092a89523abd8 100644 --- a/solution/2800-2899/2892.Minimizing Array After Replacing Pairs With Their Product/README.md +++ b/solution/2800-2899/2892.Minimizing Array After Replacing Pairs With Their Product/README.md @@ -1,4 +1,4 @@ -# [2892. Minimizing Array After Replacing Pairs With Their Product](https://leetcode.cn/problems/minimizing-array-after-replacing-pairs-with-their-product) +# [2892. 将相邻元素相乘后得到最小化数组](https://leetcode.cn/problems/minimizing-array-after-replacing-pairs-with-their-product) [English Version](/solution/2800-2899/2892.Minimizing%20Array%20After%20Replacing%20Pairs%20With%20Their%20Product/README_EN.md) @@ -6,37 +6,37 @@ -

Given an integer array nums and an integer k, you can perform the following operation on the array any number of times:

+

给定一个整数数组 nums 和一个整数 k,你可以对数组执行以下操作任意次数:

    -
  • Select two adjacent elements of the array like x and y, such that x * y <= k, and replace both of them with a single element with value x * y (e.g. in one operation the array [1, 2, 2, 3] with k = 5 can become [1, 4, 3] or [2, 2, 3], but can't become [1, 2, 6]).
  • +
  • 选择数组中的两个 相邻 元素,例如 x 和 y,使得 x * y <= k ,并用一个值为 x * y 的 单个元素 替换它们(例如,在一次操作中,数组 [1, 2, 2, 3],其中 k = 5 可以变为 [1, 4, 3] 或 [2, 2, 3],但不能变为 [1, 2, 6])。
-

Return the minimum possible length of nums after any number of operations.

+

返回 经过任意次数的操作后, nums 的 最小 可能长度。

 

-

Example 1:

+ +

示例 1:

-Input: nums = [2,3,3,7,3,5], k = 20
-Output: 3
-Explanation: We perform these operations:
+输入:nums = [2,3,3,7,3,5], k = 20
+输出:3
+解释:我们执行以下操作:
 1. [2,3,3,7,3,5] -> [6,3,7,3,5]
 2. [6,3,7,3,5] -> [18,7,3,5]
 3. [18,7,3,5] -> [18,7,15]
-It can be shown that 3 is the minimum length possible to achieve with the given operation.
-
+可以证明,在执行给定操作后,最小可能长度为3. -

Example 2:

+

示例 2:

-Input: nums = [3,3,3,3], k = 6
-Output: 4
-Explanation: We can't perform any operations since the product of every two adjacent elements is greater than 6.
-Hence, the answer is 4.
+输入:nums = [3,3,3,3], k = 6 +输出:4 +解释:由于每两个相邻元素的乘积都大于 6,所以无法执行任何操作。因此,答案为 4。

 

-

Constraints:

+ +

约束条件:

  • 1 <= nums.length <= 105
  • diff --git a/solution/README.md b/solution/README.md index 2328ae0a5357e..f06860479f5f7 100644 --- a/solution/README.md +++ b/solution/README.md @@ -2878,31 +2878,31 @@ | 2865 | [美丽塔 I](/solution/2800-2899/2865.Beautiful%20Towers%20I/README.md) | `栈`,`数组`,`单调栈` | 中等 | 第 364 场周赛 | | 2866 | [美丽塔 II](/solution/2800-2899/2866.Beautiful%20Towers%20II/README.md) | `栈`,`数组`,`单调栈` | 中等 | 第 364 场周赛 | | 2867 | [统计树中的合法路径数目](/solution/2800-2899/2867.Count%20Valid%20Paths%20in%20a%20Tree/README.md) | `树`,`深度优先搜索`,`数学`,`动态规划`,`数论` | 困难 | 第 364 场周赛 | -| 2868 | [单词游戏](/solution/2800-2899/2868.The%20Wording%20Game/README.md) | | 困难 | 🔒 | -| 2869 | [收集元素的最少操作次数](/solution/2800-2899/2869.Minimum%20Operations%20to%20Collect%20Elements/README.md) | | 简单 | 第 114 场双周赛 | -| 2870 | [使数组为空的最少操作次数](/solution/2800-2899/2870.Minimum%20Number%20of%20Operations%20to%20Make%20Array%20Empty/README.md) | | 中等 | 第 114 场双周赛 | -| 2871 | [将数组分割成最多数目的子数组](/solution/2800-2899/2871.Split%20Array%20Into%20Maximum%20Number%20of%20Subarrays/README.md) | | 中等 | 第 114 场双周赛 | -| 2872 | [可以被 K 整除连通块的最大数目](/solution/2800-2899/2872.Maximum%20Number%20of%20K-Divisible%20Components/README.md) | | 困难 | 第 114 场双周赛 | -| 2873 | [有序三元组中的最大值 I](/solution/2800-2899/2873.Maximum%20Value%20of%20an%20Ordered%20Triplet%20I/README.md) | | 简单 | 第 365 场周赛 | -| 2874 | [有序三元组中的最大值 II](/solution/2800-2899/2874.Maximum%20Value%20of%20an%20Ordered%20Triplet%20II/README.md) | | 中等 | 第 365 场周赛 | -| 2875 | [无限数组的最短子数组](/solution/2800-2899/2875.Minimum%20Size%20Subarray%20in%20Infinite%20Array/README.md) | | 中等 | 第 365 场周赛 | -| 2876 | [有向图访问计数](/solution/2800-2899/2876.Count%20Visited%20Nodes%20in%20a%20Directed%20Graph/README.md) | | 困难 | 第 365 场周赛 | -| 2877 | [Create a DataFrame from List](/solution/2800-2899/2877.Create%20a%20DataFrame%20from%20List/README.md) | | 简单 | | +| 2868 | [单词游戏](/solution/2800-2899/2868.The%20Wording%20Game/README.md) | `数组`,`数学`,`双指针`,`字符串`,`博弈` | 困难 | 🔒 | +| 2869 | [收集元素的最少操作次数](/solution/2800-2899/2869.Minimum%20Operations%20to%20Collect%20Elements/README.md) | `数组`,`哈希表` | 简单 | 第 114 场双周赛 | +| 2870 | [使数组为空的最少操作次数](/solution/2800-2899/2870.Minimum%20Number%20of%20Operations%20to%20Make%20Array%20Empty/README.md) | `贪心`,`数组`,`哈希表`,`计数` | 中等 | 第 114 场双周赛 | +| 2871 | [将数组分割成最多数目的子数组](/solution/2800-2899/2871.Split%20Array%20Into%20Maximum%20Number%20of%20Subarrays/README.md) | `贪心`,`位运算`,`数组` | 中等 | 第 114 场双周赛 | +| 2872 | [可以被 K 整除连通块的最大数目](/solution/2800-2899/2872.Maximum%20Number%20of%20K-Divisible%20Components/README.md) | `树`,`深度优先搜索`,`动态规划` | 困难 | 第 114 场双周赛 | +| 2873 | [有序三元组中的最大值 I](/solution/2800-2899/2873.Maximum%20Value%20of%20an%20Ordered%20Triplet%20I/README.md) | `数组` | 简单 | 第 365 场周赛 | +| 2874 | [有序三元组中的最大值 II](/solution/2800-2899/2874.Maximum%20Value%20of%20an%20Ordered%20Triplet%20II/README.md) | `数组` | 中等 | 第 365 场周赛 | +| 2875 | [无限数组的最短子数组](/solution/2800-2899/2875.Minimum%20Size%20Subarray%20in%20Infinite%20Array/README.md) | `数组`,`哈希表`,`前缀和`,`滑动窗口` | 中等 | 第 365 场周赛 | +| 2876 | [有向图访问计数](/solution/2800-2899/2876.Count%20Visited%20Nodes%20in%20a%20Directed%20Graph/README.md) | `图`,`记忆化搜索`,`动态规划` | 困难 | 第 365 场周赛 | +| 2877 | [从表中创建 DataFrame](/solution/2800-2899/2877.Create%20a%20DataFrame%20from%20List/README.md) | | 简单 | | | 2878 | [Get the Size of a DataFrame](/solution/2800-2899/2878.Get%20the%20Size%20of%20a%20DataFrame/README.md) | | 简单 | | | 2879 | [Display the First Three Rows](/solution/2800-2899/2879.Display%20the%20First%20Three%20Rows/README.md) | | 简单 | | | 2880 | [Select Data](/solution/2800-2899/2880.Select%20Data/README.md) | | 简单 | | -| 2881 | [Create a New Column](/solution/2800-2899/2881.Create%20a%20New%20Column/README.md) | | 简单 | | -| 2882 | [Drop Duplicate Rows](/solution/2800-2899/2882.Drop%20Duplicate%20Rows/README.md) | | 简单 | | -| 2883 | [Drop Missing Data](/solution/2800-2899/2883.Drop%20Missing%20Data/README.md) | | 简单 | | -| 2884 | [Modify Columns](/solution/2800-2899/2884.Modify%20Columns/README.md) | | 简单 | | -| 2885 | [Rename Columns](/solution/2800-2899/2885.Rename%20Columns/README.md) | | 简单 | | -| 2886 | [Change Data Type](/solution/2800-2899/2886.Change%20Data%20Type/README.md) | | 简单 | | -| 2887 | [Fill Missing Data](/solution/2800-2899/2887.Fill%20Missing%20Data/README.md) | | 简单 | | -| 2888 | [Reshape Data Concatenate](/solution/2800-2899/2888.Reshape%20Data%20Concatenate/README.md) | | 简单 | | +| 2881 | [创建新列](/solution/2800-2899/2881.Create%20a%20New%20Column/README.md) | | 简单 | | +| 2882 | [删去重复的行](/solution/2800-2899/2882.Drop%20Duplicate%20Rows/README.md) | | 简单 | | +| 2883 | [删去丢失的数据](/solution/2800-2899/2883.Drop%20Missing%20Data/README.md) | | 简单 | | +| 2884 | [修改列](/solution/2800-2899/2884.Modify%20Columns/README.md) | | 简单 | | +| 2885 | [重命名列](/solution/2800-2899/2885.Rename%20Columns/README.md) | | 简单 | | +| 2886 | [改变数据类型](/solution/2800-2899/2886.Change%20Data%20Type/README.md) | | 简单 | | +| 2887 | [填充缺失值](/solution/2800-2899/2887.Fill%20Missing%20Data/README.md) | | 简单 | | +| 2888 | [重塑数据:连结](/solution/2800-2899/2888.Reshape%20Data%20Concatenate/README.md) | | 简单 | | | 2889 | [Reshape Data Pivot](/solution/2800-2899/2889.Reshape%20Data%20Pivot/README.md) | | 简单 | | -| 2890 | [Reshape Data Melt](/solution/2800-2899/2890.Reshape%20Data%20Melt/README.md) | | 简单 | | +| 2890 | [重塑数据:融合](/solution/2800-2899/2890.Reshape%20Data%20Melt/README.md) | | 简单 | | | 2891 | [Method Chaining](/solution/2800-2899/2891.Method%20Chaining/README.md) | | 简单 | | -| 2892 | [Minimizing Array After Replacing Pairs With Their Product](/solution/2800-2899/2892.Minimizing%20Array%20After%20Replacing%20Pairs%20With%20Their%20Product/README.md) | | 中等 | 🔒 | +| 2892 | [将相邻元素相乘后得到最小化数组](/solution/2800-2899/2892.Minimizing%20Array%20After%20Replacing%20Pairs%20With%20Their%20Product/README.md) | | 中等 | 🔒 | | 2893 | [Calculate Orders Within Each Interval](/solution/2800-2899/2893.Calculate%20Orders%20Within%20Each%20Interval/README.md) | | 中等 | 🔒 | | 2894 | [分类求和并作差](/solution/2800-2899/2894.Divisible%20and%20Non-divisible%20Sums%20Difference/README.md) | | 简单 | 第 366 场周赛 | | 2895 | [最小处理时间](/solution/2800-2899/2895.Minimum%20Processing%20Time/README.md) | | 中等 | 第 366 场周赛 | diff --git a/solution/README_EN.md b/solution/README_EN.md index 43ee56d3f9858..2cf2695793f69 100644 --- a/solution/README_EN.md +++ b/solution/README_EN.md @@ -2876,15 +2876,15 @@ Press Control + F(or Command + F on | 2865 | [Beautiful Towers I](/solution/2800-2899/2865.Beautiful%20Towers%20I/README_EN.md) | `Stack`,`Array`,`Monotonic Stack` | Medium | Weekly Contest 364 | | 2866 | [Beautiful Towers II](/solution/2800-2899/2866.Beautiful%20Towers%20II/README_EN.md) | `Stack`,`Array`,`Monotonic Stack` | Medium | Weekly Contest 364 | | 2867 | [Count Valid Paths in a Tree](/solution/2800-2899/2867.Count%20Valid%20Paths%20in%20a%20Tree/README_EN.md) | `Tree`,`Depth-First Search`,`Math`,`Dynamic Programming`,`Number Theory` | Hard | Weekly Contest 364 | -| 2868 | [The Wording Game](/solution/2800-2899/2868.The%20Wording%20Game/README_EN.md) | | Hard | 🔒 | -| 2869 | [Minimum Operations to Collect Elements](/solution/2800-2899/2869.Minimum%20Operations%20to%20Collect%20Elements/README_EN.md) | | Easy | Biweekly Contest 114 | -| 2870 | [Minimum Number of Operations to Make Array Empty](/solution/2800-2899/2870.Minimum%20Number%20of%20Operations%20to%20Make%20Array%20Empty/README_EN.md) | | Medium | Biweekly Contest 114 | -| 2871 | [Split Array Into Maximum Number of Subarrays](/solution/2800-2899/2871.Split%20Array%20Into%20Maximum%20Number%20of%20Subarrays/README_EN.md) | | Medium | Biweekly Contest 114 | -| 2872 | [Maximum Number of K-Divisible Components](/solution/2800-2899/2872.Maximum%20Number%20of%20K-Divisible%20Components/README_EN.md) | | Hard | Biweekly Contest 114 | -| 2873 | [Maximum Value of an Ordered Triplet I](/solution/2800-2899/2873.Maximum%20Value%20of%20an%20Ordered%20Triplet%20I/README_EN.md) | | Easy | Weekly Contest 365 | -| 2874 | [Maximum Value of an Ordered Triplet II](/solution/2800-2899/2874.Maximum%20Value%20of%20an%20Ordered%20Triplet%20II/README_EN.md) | | Medium | Weekly Contest 365 | -| 2875 | [Minimum Size Subarray in Infinite Array](/solution/2800-2899/2875.Minimum%20Size%20Subarray%20in%20Infinite%20Array/README_EN.md) | | Medium | Weekly Contest 365 | -| 2876 | [Count Visited Nodes in a Directed Graph](/solution/2800-2899/2876.Count%20Visited%20Nodes%20in%20a%20Directed%20Graph/README_EN.md) | | Hard | Weekly Contest 365 | +| 2868 | [The Wording Game](/solution/2800-2899/2868.The%20Wording%20Game/README_EN.md) | `Array`,`Math`,`Two Pointers`,`String`,`Game Theory` | Hard | 🔒 | +| 2869 | [Minimum Operations to Collect Elements](/solution/2800-2899/2869.Minimum%20Operations%20to%20Collect%20Elements/README_EN.md) | `Array`,`Hash Table` | Easy | Biweekly Contest 114 | +| 2870 | [Minimum Number of Operations to Make Array Empty](/solution/2800-2899/2870.Minimum%20Number%20of%20Operations%20to%20Make%20Array%20Empty/README_EN.md) | `Greedy`,`Array`,`Hash Table`,`Counting` | Medium | Biweekly Contest 114 | +| 2871 | [Split Array Into Maximum Number of Subarrays](/solution/2800-2899/2871.Split%20Array%20Into%20Maximum%20Number%20of%20Subarrays/README_EN.md) | `Greedy`,`Bit Manipulation`,`Array` | Medium | Biweekly Contest 114 | +| 2872 | [Maximum Number of K-Divisible Components](/solution/2800-2899/2872.Maximum%20Number%20of%20K-Divisible%20Components/README_EN.md) | `Tree`,`Depth-First Search`,`Dynamic Programming` | Hard | Biweekly Contest 114 | +| 2873 | [Maximum Value of an Ordered Triplet I](/solution/2800-2899/2873.Maximum%20Value%20of%20an%20Ordered%20Triplet%20I/README_EN.md) | `Array` | Easy | Weekly Contest 365 | +| 2874 | [Maximum Value of an Ordered Triplet II](/solution/2800-2899/2874.Maximum%20Value%20of%20an%20Ordered%20Triplet%20II/README_EN.md) | `Array` | Medium | Weekly Contest 365 | +| 2875 | [Minimum Size Subarray in Infinite Array](/solution/2800-2899/2875.Minimum%20Size%20Subarray%20in%20Infinite%20Array/README_EN.md) | `Array`,`Hash Table`,`Prefix Sum`,`Sliding Window` | Medium | Weekly Contest 365 | +| 2876 | [Count Visited Nodes in a Directed Graph](/solution/2800-2899/2876.Count%20Visited%20Nodes%20in%20a%20Directed%20Graph/README_EN.md) | `Graph`,`Memoization`,`Dynamic Programming` | Hard | Weekly Contest 365 | | 2877 | [Create a DataFrame from List](/solution/2800-2899/2877.Create%20a%20DataFrame%20from%20List/README_EN.md) | | Easy | | | 2878 | [Get the Size of a DataFrame](/solution/2800-2899/2878.Get%20the%20Size%20of%20a%20DataFrame/README_EN.md) | | Easy | | | 2879 | [Display the First Three Rows](/solution/2800-2899/2879.Display%20the%20First%20Three%20Rows/README_EN.md) | | Easy | | diff --git a/solution/summary.md b/solution/summary.md index 60cef39e98a14..8205b683e8454 100644 --- a/solution/summary.md +++ b/solution/summary.md @@ -2932,22 +2932,22 @@ - [2874.有序三元组中的最大值 II](/solution/2800-2899/2874.Maximum%20Value%20of%20an%20Ordered%20Triplet%20II/README.md) - [2875.无限数组的最短子数组](/solution/2800-2899/2875.Minimum%20Size%20Subarray%20in%20Infinite%20Array/README.md) - [2876.有向图访问计数](/solution/2800-2899/2876.Count%20Visited%20Nodes%20in%20a%20Directed%20Graph/README.md) - - [2877.Create a DataFrame from List](/solution/2800-2899/2877.Create%20a%20DataFrame%20from%20List/README.md) + - [2877.从表中创建 DataFrame](/solution/2800-2899/2877.Create%20a%20DataFrame%20from%20List/README.md) - [2878.Get the Size of a DataFrame](/solution/2800-2899/2878.Get%20the%20Size%20of%20a%20DataFrame/README.md) - [2879.Display the First Three Rows](/solution/2800-2899/2879.Display%20the%20First%20Three%20Rows/README.md) - [2880.Select Data](/solution/2800-2899/2880.Select%20Data/README.md) - - [2881.Create a New Column](/solution/2800-2899/2881.Create%20a%20New%20Column/README.md) - - [2882.Drop Duplicate Rows](/solution/2800-2899/2882.Drop%20Duplicate%20Rows/README.md) - - [2883.Drop Missing Data](/solution/2800-2899/2883.Drop%20Missing%20Data/README.md) - - [2884.Modify Columns](/solution/2800-2899/2884.Modify%20Columns/README.md) - - [2885.Rename Columns](/solution/2800-2899/2885.Rename%20Columns/README.md) - - [2886.Change Data Type](/solution/2800-2899/2886.Change%20Data%20Type/README.md) - - [2887.Fill Missing Data](/solution/2800-2899/2887.Fill%20Missing%20Data/README.md) - - [2888.Reshape Data Concatenate](/solution/2800-2899/2888.Reshape%20Data%20Concatenate/README.md) + - [2881.创建新列](/solution/2800-2899/2881.Create%20a%20New%20Column/README.md) + - [2882.删去重复的行](/solution/2800-2899/2882.Drop%20Duplicate%20Rows/README.md) + - [2883.删去丢失的数据](/solution/2800-2899/2883.Drop%20Missing%20Data/README.md) + - [2884.修改列](/solution/2800-2899/2884.Modify%20Columns/README.md) + - [2885.重命名列](/solution/2800-2899/2885.Rename%20Columns/README.md) + - [2886.改变数据类型](/solution/2800-2899/2886.Change%20Data%20Type/README.md) + - [2887.填充缺失值](/solution/2800-2899/2887.Fill%20Missing%20Data/README.md) + - [2888.重塑数据:连结](/solution/2800-2899/2888.Reshape%20Data%20Concatenate/README.md) - [2889.Reshape Data Pivot](/solution/2800-2899/2889.Reshape%20Data%20Pivot/README.md) - - [2890.Reshape Data Melt](/solution/2800-2899/2890.Reshape%20Data%20Melt/README.md) + - [2890.重塑数据:融合](/solution/2800-2899/2890.Reshape%20Data%20Melt/README.md) - [2891.Method Chaining](/solution/2800-2899/2891.Method%20Chaining/README.md) - - [2892.Minimizing Array After Replacing Pairs With Their Product](/solution/2800-2899/2892.Minimizing%20Array%20After%20Replacing%20Pairs%20With%20Their%20Product/README.md) + - [2892.将相邻元素相乘后得到最小化数组](/solution/2800-2899/2892.Minimizing%20Array%20After%20Replacing%20Pairs%20With%20Their%20Product/README.md) - [2893.Calculate Orders Within Each Interval](/solution/2800-2899/2893.Calculate%20Orders%20Within%20Each%20Interval/README.md) - [2894.分类求和并作差](/solution/2800-2899/2894.Divisible%20and%20Non-divisible%20Sums%20Difference/README.md) - [2895.最小处理时间](/solution/2800-2899/2895.Minimum%20Processing%20Time/README.md)