Skip to content

Commit f96984e

Browse files
committed
feat: add solutions to lc problem: No.2539
No.2539.Count the Number of Good Subsequences
1 parent 574890b commit f96984e

File tree

6 files changed

+558
-4
lines changed

6 files changed

+558
-4
lines changed

solution/2500-2599/2539.Count the Number of Good Subsequences/README.md

+194-4
Original file line numberDiff line numberDiff line change
@@ -48,34 +48,224 @@
4848

4949
<!-- 这里可写通用的实现逻辑 -->
5050

51+
**方法一:枚举 + 组合计数**
52+
53+
由于题目说的是子序列中字母出现的次数,因此,我们可以先用一个数组 `cnt` 统计字符串 $s$ 中每个字母出现的次数,记最大的次数为 $mx$。
54+
55+
接下来,我们在 $[1,2..mx]$ 范围内枚举子序列中字母出现的次数 $i$,然后枚举所有出现过的字母,如果该字母 $c$ 的出现次数 $cnt[c]$ 大于等于 $i$,那么我们可以从这 $cnt[c]$ 个相同字母中选择其中 $i$ 个,也可以一个都不选,那么当前字母的可选方案数就是 $comb(cnt[c], i) + 1$,将所有可选方案数相乘,可以得到当前次数的所有子序列次数,将次数减去 $1$ 累加到答案中。
56+
57+
那么问题的关键在于如何快速求出 $comb(n, k)$,我们可以用逆元来求解,具体实现见代码。
58+
59+
时间复杂度 $O(n \times C)$,空间复杂度 $O(n)$。其中 $n$ 为字符串 $s$ 的长度,而 $C$ 是字符集的大小,本题中 $C = 26$。
60+
5161
<!-- tabs:start -->
5262

5363
### **Python3**
5464

5565
<!-- 这里可写当前语言的特殊实现逻辑 -->
5666

5767
```python
58-
68+
N = 10001
69+
MOD = 10**9 + 7
70+
f = [1] * N
71+
g = [1] * N
72+
for i in range(1, N):
73+
f[i] = f[i - 1] * i % MOD
74+
g[i] = pow(f[i], MOD - 2, MOD)
75+
76+
77+
def comb(n, k):
78+
return f[n] * g[k] * g[n - k] % MOD
79+
80+
81+
class Solution:
82+
def countGoodSubsequences(self, s: str) -> int:
83+
cnt = Counter(s)
84+
ans = 0
85+
for i in range(1, max(cnt.values()) + 1):
86+
x = 1
87+
for v in cnt.values():
88+
if v >= i:
89+
x = x * (comb(v, i) + 1) % MOD
90+
ans = (ans + x - 1) % MOD
91+
return ans
5992
```
6093

6194
### **Java**
6295

6396
<!-- 这里可写当前语言的特殊实现逻辑 -->
6497

6598
```java
66-
99+
class Solution {
100+
private static final int N = 10001;
101+
private static final int MOD = (int) 1e9 + 7;
102+
private static final long[] F = new long[N];
103+
private static final long[] G = new long[N];
104+
105+
static {
106+
F[0] = 1;
107+
G[0] = 1;
108+
for (int i = 1; i < N; ++i) {
109+
F[i] = F[i - 1] * i % MOD;
110+
G[i] = qmi(F[i], MOD - 2, MOD);
111+
}
112+
}
113+
114+
public static long qmi(long a, long k, long p) {
115+
long res = 1;
116+
while (k != 0) {
117+
if ((k & 1) == 1) {
118+
res = res * a % p;
119+
}
120+
k >>= 1;
121+
a = a * a % p;
122+
}
123+
return res;
124+
}
125+
126+
public static long comb(int n, int k) {
127+
return (F[n] * G[k] % MOD) * G[n - k] % MOD;
128+
}
129+
130+
public int countGoodSubsequences(String s) {
131+
int[] cnt = new int[26];
132+
int mx = 1;
133+
for (int i = 0; i < s.length(); ++i) {
134+
mx = Math.max(mx, ++cnt[s.charAt(i) - 'a']);
135+
}
136+
long ans = 0;
137+
for (int i = 1; i <= mx; ++i) {
138+
long x = 1;
139+
for (int j = 0; j < 26; ++j) {
140+
if (cnt[j] >= i) {
141+
x = x * (comb(cnt[j], i) + 1) % MOD;
142+
}
143+
}
144+
ans = (ans + x - 1) % MOD;
145+
}
146+
return (int) ans;
147+
}
148+
}
67149
```
68150

69151
### **C++**
70152

71153
```cpp
72-
154+
int N = 10001;
155+
int MOD = 1e9 + 7;
156+
long f[10001];
157+
long g[10001];
158+
159+
long qmi(long a, long k, long p) {
160+
long res = 1;
161+
while (k != 0) {
162+
if ((k & 1) == 1) {
163+
res = res * a % p;
164+
}
165+
k >>= 1;
166+
a = a * a % p;
167+
}
168+
return res;
169+
}
170+
171+
void init() {
172+
f[0] = 1;
173+
g[0] = 1;
174+
for (int i = 1; i < N; ++i) {
175+
f[i] = f[i - 1] * i % MOD;
176+
g[i] = qmi(f[i], MOD - 2, MOD);
177+
}
178+
}
179+
180+
int comb(int n, int k) {
181+
return (f[n] * g[k] % MOD) * g[n - k] % MOD;
182+
}
183+
184+
185+
class Solution {
186+
public:
187+
Solution() {
188+
init();
189+
}
190+
int countGoodSubsequences(string s) {
191+
int cnt[26]{};
192+
int mx = 1;
193+
for (char& c : s) {
194+
mx = max(mx, ++cnt[c - 'a']);
195+
}
196+
long ans = 0;
197+
for (int i = 1; i <= mx; ++i) {
198+
long x = 1;
199+
for (int j = 0; j < 26; ++j) {
200+
if (cnt[j] >= i) {
201+
x = (x * (comb(cnt[j], i) + 1)) % MOD;
202+
}
203+
}
204+
ans = (ans + x - 1) % MOD;
205+
}
206+
return ans;
207+
}
208+
};
73209
```
74210
75211
### **Go**
76212
77213
```go
78-
214+
const n = 1e4 + 1
215+
const mod = 1e9 + 7
216+
217+
var f = make([]int, n)
218+
var g = make([]int, n)
219+
220+
func qmi(a, k, p int) int {
221+
res := 1
222+
for k != 0 {
223+
if k&1 == 1 {
224+
res = res * a % p
225+
}
226+
k >>= 1
227+
a = a * a % p
228+
}
229+
return res
230+
}
231+
232+
func init() {
233+
f[0], g[0] = 1, 1
234+
for i := 1; i < n; i++ {
235+
f[i] = f[i-1] * i % mod
236+
g[i] = qmi(f[i], mod-2, mod)
237+
}
238+
}
239+
240+
func comb(n, k int) int {
241+
return (f[n] * g[k] % mod) * g[n-k] % mod
242+
}
243+
244+
func countGoodSubsequences(s string) (ans int) {
245+
cnt := [26]int{}
246+
mx := 1
247+
for _, c := range s {
248+
cnt[c-'a']++
249+
mx = max(mx, cnt[c-'a'])
250+
}
251+
for i := 1; i <= mx; i++ {
252+
x := 1
253+
for _, v := range cnt {
254+
if v >= i {
255+
x = (x * (comb(v, i) + 1)) % mod
256+
}
257+
}
258+
ans = (ans + x - 1) % mod
259+
}
260+
return
261+
}
262+
263+
func max(a, b int) int {
264+
if a > b {
265+
return a
266+
}
267+
return b
268+
}
79269
```
80270

81271
### **...**

0 commit comments

Comments
 (0)