|
54 | 54 |
|
55 | 55 | <!-- 这里可写通用的实现逻辑 -->
|
56 | 56 |
|
| 57 | +**方法一:排序 + 动态规划** |
| 58 | + |
| 59 | +我们注意到,如果我们多次操作同一个数,那么只有最后一次操作是有意义的,其余的对该数的操作,只会使得其它数字增大。因此,我们最多对每个数操作一次,也即是说,操作次数在 $[0,..n]$ 之间。 |
| 60 | + |
| 61 | +我们不妨假设进行了 $j$ 次操作,操作的数字下标分别为 $i_1, i_2, \cdots, i_j$,那么对于这 $j$ 次操作,每一次可以使得数组元素和减少的值为: |
| 62 | + |
| 63 | +$$ |
| 64 | +\begin{aligned} |
| 65 | +& d_1 = nums_1[i_1] + nums_2[i_1] \times 1 \\ |
| 66 | +& d_2 = nums_1[i_2] + nums_2[i_2] \times 2 \\ |
| 67 | +& \cdots \\ |
| 68 | +& d_j = nums_1[i_j] + nums_2[i_j] \times j |
| 69 | +\end{aligned} |
| 70 | +$$ |
| 71 | + |
| 72 | +从贪心的角度考虑,为了使得数组元素和的减少量最大,我们应当让 $nums_2$ 中的较大元素尽可能放在后面操作。因此,我们可以对 $nums_1$ 和 $nums_2$ 按照 $nums_2$ 的元素值从小到大进行排序。 |
| 73 | + |
| 74 | +接下来,我们考虑动态规划的实现。我们用 $f[i][j]$ 表示对于数组 $nums_1$ 的前 $i$ 个元素,进行 $j$ 次操作,所能减少的数组元素和的最大值。我们可以得到如下的状态转移方程: |
| 75 | + |
| 76 | +$$ |
| 77 | +f[i][j] = \max \{f[i-1][j], f[i-1][j-1] + nums_1[i] + nums_2[i] \times j\} |
| 78 | +$$ |
| 79 | + |
| 80 | +最后,我们枚举 $j$,找到最小的满足 $s_1 + s_2 \times j - f[n][j] \le x$ 的 $j$ 即可。 |
| 81 | + |
| 82 | +时间复杂度 $O(n^2)$,空间复杂度 $O(n^2)$。其中 $n$ 是数组的长度。 |
| 83 | + |
| 84 | +我们注意到,状态 $f[i][j]$ 只与 $f[i-1][j]$ 和 $f[i-1][j-1]$ 有关,因此我们可以优化掉第一维,将空间复杂度降低到 $O(n)$。 |
| 85 | + |
57 | 86 | <!-- tabs:start -->
|
58 | 87 |
|
59 | 88 | ### **Python3**
|
60 | 89 |
|
61 | 90 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
62 | 91 |
|
63 | 92 | ```python
|
| 93 | +class Solution: |
| 94 | + def minimumTime(self, nums1: List[int], nums2: List[int], x: int) -> int: |
| 95 | + n = len(nums1) |
| 96 | + f = [[0] * (n + 1) for _ in range(n + 1)] |
| 97 | + for i, (a, b) in enumerate(sorted(zip(nums1, nums2), key=lambda z: z[1]), 1): |
| 98 | + for j in range(n + 1): |
| 99 | + f[i][j] = f[i - 1][j] |
| 100 | + if j > 0: |
| 101 | + f[i][j] = max(f[i][j], f[i - 1][j - 1] + a + b * j) |
| 102 | + s1 = sum(nums1) |
| 103 | + s2 = sum(nums2) |
| 104 | + for j in range(n + 1): |
| 105 | + if s1 + s2 * j - f[n][j] <= x: |
| 106 | + return j |
| 107 | + return -1 |
| 108 | +``` |
64 | 109 |
|
| 110 | +```python |
| 111 | +class Solution: |
| 112 | + def minimumTime(self, nums1: List[int], nums2: List[int], x: int) -> int: |
| 113 | + n = len(nums1) |
| 114 | + f = [0] * (n + 1) |
| 115 | + for a, b in sorted(zip(nums1, nums2), key=lambda z: z[1]): |
| 116 | + for j in range(n, 0, -1): |
| 117 | + f[j] = max(f[j], f[j - 1] + a + b * j) |
| 118 | + s1 = sum(nums1) |
| 119 | + s2 = sum(nums2) |
| 120 | + for j in range(n + 1): |
| 121 | + if s1 + s2 * j - f[j] <= x: |
| 122 | + return j |
| 123 | + return -1 |
65 | 124 | ```
|
66 | 125 |
|
67 | 126 | ### **Java**
|
68 | 127 |
|
69 | 128 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
70 | 129 |
|
71 | 130 | ```java
|
| 131 | +class Solution { |
| 132 | + public int minimumTime(List<Integer> nums1, List<Integer> nums2, int x) { |
| 133 | + int n = nums1.size(); |
| 134 | + int[][] f = new int[n + 1][n + 1]; |
| 135 | + int[][] nums = new int[n][0]; |
| 136 | + for (int i = 0; i < n; ++i) { |
| 137 | + nums[i] = new int[] {nums1.get(i), nums2.get(i)}; |
| 138 | + } |
| 139 | + Arrays.sort(nums, Comparator.comparingInt(a -> a[1])); |
| 140 | + for (int i = 1; i <= n; ++i) { |
| 141 | + for (int j = 0; j <= n; ++j) { |
| 142 | + f[i][j] = f[i - 1][j]; |
| 143 | + if (j > 0) { |
| 144 | + int a = nums[i - 1][0], b = nums[i - 1][1]; |
| 145 | + f[i][j] = Math.max(f[i][j], f[i - 1][j - 1] + a + b * j); |
| 146 | + } |
| 147 | + } |
| 148 | + } |
| 149 | + int s1 = 0, s2 = 0; |
| 150 | + for (int v : nums1) { |
| 151 | + s1 += v; |
| 152 | + } |
| 153 | + for (int v : nums2) { |
| 154 | + s2 += v; |
| 155 | + } |
| 156 | + |
| 157 | + for (int j = 0; j <= n; ++j) { |
| 158 | + if (s1 + s2 * j - f[n][j] <= x) { |
| 159 | + return j; |
| 160 | + } |
| 161 | + } |
| 162 | + return -1; |
| 163 | + } |
| 164 | +} |
| 165 | +``` |
72 | 166 |
|
| 167 | +```java |
| 168 | +class Solution { |
| 169 | + public int minimumTime(List<Integer> nums1, List<Integer> nums2, int x) { |
| 170 | + int n = nums1.size(); |
| 171 | + int[] f = new int[n + 1]; |
| 172 | + int[][] nums = new int[n][0]; |
| 173 | + for (int i = 0; i < n; ++i) { |
| 174 | + nums[i] = new int[] {nums1.get(i), nums2.get(i)}; |
| 175 | + } |
| 176 | + Arrays.sort(nums, Comparator.comparingInt(a -> a[1])); |
| 177 | + for (int[] e : nums) { |
| 178 | + int a = e[0], b = e[1]; |
| 179 | + for (int j = n; j > 0; --j) { |
| 180 | + f[j] = Math.max(f[j], f[j - 1] + a + b * j); |
| 181 | + } |
| 182 | + } |
| 183 | + int s1 = 0, s2 = 0; |
| 184 | + for (int v : nums1) { |
| 185 | + s1 += v; |
| 186 | + } |
| 187 | + for (int v : nums2) { |
| 188 | + s2 += v; |
| 189 | + } |
| 190 | + |
| 191 | + for (int j = 0; j <= n; ++j) { |
| 192 | + if (s1 + s2 * j - f[j] <= x) { |
| 193 | + return j; |
| 194 | + } |
| 195 | + } |
| 196 | + return -1; |
| 197 | + } |
| 198 | +} |
73 | 199 | ```
|
74 | 200 |
|
75 | 201 | ### **C++**
|
76 | 202 |
|
77 | 203 | ```cpp
|
| 204 | +class Solution { |
| 205 | +public: |
| 206 | + int minimumTime(vector<int>& nums1, vector<int>& nums2, int x) { |
| 207 | + int n = nums1.size(); |
| 208 | + vector<pair<int, int>> nums; |
| 209 | + for (int i = 0; i < n; ++i) { |
| 210 | + nums.emplace_back(nums2[i], nums1[i]); |
| 211 | + } |
| 212 | + sort(nums.begin(), nums.end()); |
| 213 | + int f[n + 1][n + 1]; |
| 214 | + memset(f, 0, sizeof(f)); |
| 215 | + for (int i = 1; i <= n; ++i) { |
| 216 | + for (int j = 0; j <= n; ++j) { |
| 217 | + f[i][j] = f[i - 1][j]; |
| 218 | + if (j) { |
| 219 | + auto [b, a] = nums[i - 1]; |
| 220 | + f[i][j] = max(f[i][j], f[i - 1][j - 1] + a + b * j); |
| 221 | + } |
| 222 | + } |
| 223 | + } |
| 224 | + int s1 = accumulate(nums1.begin(), nums1.end(), 0); |
| 225 | + int s2 = accumulate(nums2.begin(), nums2.end(), 0); |
| 226 | + for (int j = 0; j <= n; ++j) { |
| 227 | + if (s1 + s2 * j - f[n][j] <= x) { |
| 228 | + return j; |
| 229 | + } |
| 230 | + } |
| 231 | + return -1; |
| 232 | + } |
| 233 | +}; |
| 234 | +``` |
78 | 235 |
|
| 236 | +```cpp |
| 237 | +class Solution { |
| 238 | +public: |
| 239 | + int minimumTime(vector<int>& nums1, vector<int>& nums2, int x) { |
| 240 | + int n = nums1.size(); |
| 241 | + vector<pair<int, int>> nums; |
| 242 | + for (int i = 0; i < n; ++i) { |
| 243 | + nums.emplace_back(nums2[i], nums1[i]); |
| 244 | + } |
| 245 | + sort(nums.begin(), nums.end()); |
| 246 | + int f[n + 1]; |
| 247 | + memset(f, 0, sizeof(f)); |
| 248 | + for (auto [b, a] : nums) { |
| 249 | + for (int j = n; j; --j) { |
| 250 | + f[j] = max(f[j], f[j - 1] + a + b * j); |
| 251 | + } |
| 252 | + } |
| 253 | + int s1 = accumulate(nums1.begin(), nums1.end(), 0); |
| 254 | + int s2 = accumulate(nums2.begin(), nums2.end(), 0); |
| 255 | + for (int j = 0; j <= n; ++j) { |
| 256 | + if (s1 + s2 * j - f[j] <= x) { |
| 257 | + return j; |
| 258 | + } |
| 259 | + } |
| 260 | + return -1; |
| 261 | + } |
| 262 | +}; |
79 | 263 | ```
|
80 | 264 |
|
81 | 265 | ### **Go**
|
82 | 266 |
|
83 | 267 | ```go
|
| 268 | +func minimumTime(nums1 []int, nums2 []int, x int) int { |
| 269 | + n := len(nums1) |
| 270 | + f := make([][]int, n+1) |
| 271 | + for i := range f { |
| 272 | + f[i] = make([]int, n+1) |
| 273 | + } |
| 274 | + type pair struct{ a, b int } |
| 275 | + nums := make([]pair, n) |
| 276 | + var s1, s2 int |
| 277 | + for i := range nums { |
| 278 | + s1 += nums1[i] |
| 279 | + s2 += nums2[i] |
| 280 | + nums[i] = pair{nums1[i], nums2[i]} |
| 281 | + } |
| 282 | + sort.Slice(nums, func(i, j int) bool { return nums[i].b < nums[j].b }) |
| 283 | + for i := 1; i <= n; i++ { |
| 284 | + for j := 0; j <= n; j++ { |
| 285 | + f[i][j] = f[i-1][j] |
| 286 | + if j > 0 { |
| 287 | + a, b := nums[i-1].a, nums[i-1].b |
| 288 | + f[i][j] = max(f[i][j], f[i-1][j-1]+a+b*j) |
| 289 | + } |
| 290 | + } |
| 291 | + } |
| 292 | + for j := 0; j <= n; j++ { |
| 293 | + if s1+s2*j-f[n][j] <= x { |
| 294 | + return j |
| 295 | + } |
| 296 | + } |
| 297 | + return -1 |
| 298 | +} |
| 299 | + |
| 300 | +func max(a, b int) int { |
| 301 | + if a > b { |
| 302 | + return a |
| 303 | + } |
| 304 | + return b |
| 305 | +} |
| 306 | +``` |
| 307 | + |
| 308 | +```go |
| 309 | +func minimumTime(nums1 []int, nums2 []int, x int) int { |
| 310 | + n := len(nums1) |
| 311 | + f := make([]int, n+1) |
| 312 | + type pair struct{ a, b int } |
| 313 | + nums := make([]pair, n) |
| 314 | + var s1, s2 int |
| 315 | + for i := range nums { |
| 316 | + s1 += nums1[i] |
| 317 | + s2 += nums2[i] |
| 318 | + nums[i] = pair{nums1[i], nums2[i]} |
| 319 | + } |
| 320 | + sort.Slice(nums, func(i, j int) bool { return nums[i].b < nums[j].b }) |
| 321 | + for _, e := range nums { |
| 322 | + a, b := e.a, e.b |
| 323 | + for j := n; j > 0; j-- { |
| 324 | + f[j] = max(f[j], f[j-1]+a+b*j) |
| 325 | + } |
| 326 | + } |
| 327 | + for j := 0; j <= n; j++ { |
| 328 | + if s1+s2*j-f[j] <= x { |
| 329 | + return j |
| 330 | + } |
| 331 | + } |
| 332 | + return -1 |
| 333 | +} |
| 334 | + |
| 335 | +func max(a, b int) int { |
| 336 | + if a > b { |
| 337 | + return a |
| 338 | + } |
| 339 | + return b |
| 340 | +} |
| 341 | +``` |
| 342 | + |
| 343 | +### **TypeScript** |
| 344 | + |
| 345 | +```ts |
| 346 | +function minimumTime(nums1: number[], nums2: number[], x: number): number { |
| 347 | + const n = nums1.length; |
| 348 | + const f: number[][] = Array(n + 1) |
| 349 | + .fill(0) |
| 350 | + .map(() => Array(n + 1).fill(0)); |
| 351 | + const nums: number[][] = []; |
| 352 | + for (let i = 0; i < n; ++i) { |
| 353 | + nums.push([nums1[i], nums2[i]]); |
| 354 | + } |
| 355 | + nums.sort((a, b) => a[1] - b[1]); |
| 356 | + for (let i = 1; i <= n; ++i) { |
| 357 | + for (let j = 0; j <= n; ++j) { |
| 358 | + f[i][j] = f[i - 1][j]; |
| 359 | + if (j > 0) { |
| 360 | + const [a, b] = nums[i - 1]; |
| 361 | + f[i][j] = Math.max(f[i][j], f[i - 1][j - 1] + a + b * j); |
| 362 | + } |
| 363 | + } |
| 364 | + } |
| 365 | + const s1 = nums1.reduce((a, b) => a + b, 0); |
| 366 | + const s2 = nums2.reduce((a, b) => a + b, 0); |
| 367 | + for (let j = 0; j <= n; ++j) { |
| 368 | + if (s1 + s2 * j - f[n][j] <= x) { |
| 369 | + return j; |
| 370 | + } |
| 371 | + } |
| 372 | + return -1; |
| 373 | +} |
| 374 | +``` |
84 | 375 |
|
| 376 | +```ts |
| 377 | +function minimumTime(nums1: number[], nums2: number[], x: number): number { |
| 378 | + const n = nums1.length; |
| 379 | + const f: number[] = new Array(n + 1).fill(0); |
| 380 | + const nums: number[][] = []; |
| 381 | + for (let i = 0; i < n; ++i) { |
| 382 | + nums.push([nums1[i], nums2[i]]); |
| 383 | + } |
| 384 | + nums.sort((a, b) => a[1] - b[1]); |
| 385 | + for (const [a, b] of nums) { |
| 386 | + for (let j = n; j > 0; --j) { |
| 387 | + f[j] = Math.max(f[j], f[j - 1] + a + b * j); |
| 388 | + } |
| 389 | + } |
| 390 | + const s1 = nums1.reduce((a, b) => a + b, 0); |
| 391 | + const s2 = nums2.reduce((a, b) => a + b, 0); |
| 392 | + for (let j = 0; j <= n; ++j) { |
| 393 | + if (s1 + s2 * j - f[j] <= x) { |
| 394 | + return j; |
| 395 | + } |
| 396 | + } |
| 397 | + return -1; |
| 398 | +} |
85 | 399 | ```
|
86 | 400 |
|
87 | 401 | ### **...**
|
|
0 commit comments