Skip to content

Commit ed1f0bc

Browse files
authored
feat: add solutions to lc problem: No.2809 (#1411)
No.2809.Minimum Time to Make Array Sum At Most x
1 parent f00b338 commit ed1f0bc

File tree

7 files changed

+723
-0
lines changed

7 files changed

+723
-0
lines changed

solution/2800-2899/2809.Minimum Time to Make Array Sum At Most x/README.md

+314
Original file line numberDiff line numberDiff line change
@@ -54,34 +54,348 @@
5454

5555
<!-- 这里可写通用的实现逻辑 -->
5656

57+
**方法一:排序 + 动态规划**
58+
59+
我们注意到,如果我们多次操作同一个数,那么只有最后一次操作是有意义的,其余的对该数的操作,只会使得其它数字增大。因此,我们最多对每个数操作一次,也即是说,操作次数在 $[0,..n]$ 之间。
60+
61+
我们不妨假设进行了 $j$ 次操作,操作的数字下标分别为 $i_1, i_2, \cdots, i_j$,那么对于这 $j$ 次操作,每一次可以使得数组元素和减少的值为:
62+
63+
$$
64+
\begin{aligned}
65+
& d_1 = nums_1[i_1] + nums_2[i_1] \times 1 \\
66+
& d_2 = nums_1[i_2] + nums_2[i_2] \times 2 \\
67+
& \cdots \\
68+
& d_j = nums_1[i_j] + nums_2[i_j] \times j
69+
\end{aligned}
70+
$$
71+
72+
从贪心的角度考虑,为了使得数组元素和的减少量最大,我们应当让 $nums_2$ 中的较大元素尽可能放在后面操作。因此,我们可以对 $nums_1$ 和 $nums_2$ 按照 $nums_2$ 的元素值从小到大进行排序。
73+
74+
接下来,我们考虑动态规划的实现。我们用 $f[i][j]$ 表示对于数组 $nums_1$ 的前 $i$ 个元素,进行 $j$ 次操作,所能减少的数组元素和的最大值。我们可以得到如下的状态转移方程:
75+
76+
$$
77+
f[i][j] = \max \{f[i-1][j], f[i-1][j-1] + nums_1[i] + nums_2[i] \times j\}
78+
$$
79+
80+
最后,我们枚举 $j$,找到最小的满足 $s_1 + s_2 \times j - f[n][j] \le x$ 的 $j$ 即可。
81+
82+
时间复杂度 $O(n^2)$,空间复杂度 $O(n^2)$。其中 $n$ 是数组的长度。
83+
84+
我们注意到,状态 $f[i][j]$ 只与 $f[i-1][j]$ 和 $f[i-1][j-1]$ 有关,因此我们可以优化掉第一维,将空间复杂度降低到 $O(n)$。
85+
5786
<!-- tabs:start -->
5887

5988
### **Python3**
6089

6190
<!-- 这里可写当前语言的特殊实现逻辑 -->
6291

6392
```python
93+
class Solution:
94+
def minimumTime(self, nums1: List[int], nums2: List[int], x: int) -> int:
95+
n = len(nums1)
96+
f = [[0] * (n + 1) for _ in range(n + 1)]
97+
for i, (a, b) in enumerate(sorted(zip(nums1, nums2), key=lambda z: z[1]), 1):
98+
for j in range(n + 1):
99+
f[i][j] = f[i - 1][j]
100+
if j > 0:
101+
f[i][j] = max(f[i][j], f[i - 1][j - 1] + a + b * j)
102+
s1 = sum(nums1)
103+
s2 = sum(nums2)
104+
for j in range(n + 1):
105+
if s1 + s2 * j - f[n][j] <= x:
106+
return j
107+
return -1
108+
```
64109

110+
```python
111+
class Solution:
112+
def minimumTime(self, nums1: List[int], nums2: List[int], x: int) -> int:
113+
n = len(nums1)
114+
f = [0] * (n + 1)
115+
for a, b in sorted(zip(nums1, nums2), key=lambda z: z[1]):
116+
for j in range(n, 0, -1):
117+
f[j] = max(f[j], f[j - 1] + a + b * j)
118+
s1 = sum(nums1)
119+
s2 = sum(nums2)
120+
for j in range(n + 1):
121+
if s1 + s2 * j - f[j] <= x:
122+
return j
123+
return -1
65124
```
66125

67126
### **Java**
68127

69128
<!-- 这里可写当前语言的特殊实现逻辑 -->
70129

71130
```java
131+
class Solution {
132+
public int minimumTime(List<Integer> nums1, List<Integer> nums2, int x) {
133+
int n = nums1.size();
134+
int[][] f = new int[n + 1][n + 1];
135+
int[][] nums = new int[n][0];
136+
for (int i = 0; i < n; ++i) {
137+
nums[i] = new int[] {nums1.get(i), nums2.get(i)};
138+
}
139+
Arrays.sort(nums, Comparator.comparingInt(a -> a[1]));
140+
for (int i = 1; i <= n; ++i) {
141+
for (int j = 0; j <= n; ++j) {
142+
f[i][j] = f[i - 1][j];
143+
if (j > 0) {
144+
int a = nums[i - 1][0], b = nums[i - 1][1];
145+
f[i][j] = Math.max(f[i][j], f[i - 1][j - 1] + a + b * j);
146+
}
147+
}
148+
}
149+
int s1 = 0, s2 = 0;
150+
for (int v : nums1) {
151+
s1 += v;
152+
}
153+
for (int v : nums2) {
154+
s2 += v;
155+
}
156+
157+
for (int j = 0; j <= n; ++j) {
158+
if (s1 + s2 * j - f[n][j] <= x) {
159+
return j;
160+
}
161+
}
162+
return -1;
163+
}
164+
}
165+
```
72166

167+
```java
168+
class Solution {
169+
public int minimumTime(List<Integer> nums1, List<Integer> nums2, int x) {
170+
int n = nums1.size();
171+
int[] f = new int[n + 1];
172+
int[][] nums = new int[n][0];
173+
for (int i = 0; i < n; ++i) {
174+
nums[i] = new int[] {nums1.get(i), nums2.get(i)};
175+
}
176+
Arrays.sort(nums, Comparator.comparingInt(a -> a[1]));
177+
for (int[] e : nums) {
178+
int a = e[0], b = e[1];
179+
for (int j = n; j > 0; --j) {
180+
f[j] = Math.max(f[j], f[j - 1] + a + b * j);
181+
}
182+
}
183+
int s1 = 0, s2 = 0;
184+
for (int v : nums1) {
185+
s1 += v;
186+
}
187+
for (int v : nums2) {
188+
s2 += v;
189+
}
190+
191+
for (int j = 0; j <= n; ++j) {
192+
if (s1 + s2 * j - f[j] <= x) {
193+
return j;
194+
}
195+
}
196+
return -1;
197+
}
198+
}
73199
```
74200

75201
### **C++**
76202

77203
```cpp
204+
class Solution {
205+
public:
206+
int minimumTime(vector<int>& nums1, vector<int>& nums2, int x) {
207+
int n = nums1.size();
208+
vector<pair<int, int>> nums;
209+
for (int i = 0; i < n; ++i) {
210+
nums.emplace_back(nums2[i], nums1[i]);
211+
}
212+
sort(nums.begin(), nums.end());
213+
int f[n + 1][n + 1];
214+
memset(f, 0, sizeof(f));
215+
for (int i = 1; i <= n; ++i) {
216+
for (int j = 0; j <= n; ++j) {
217+
f[i][j] = f[i - 1][j];
218+
if (j) {
219+
auto [b, a] = nums[i - 1];
220+
f[i][j] = max(f[i][j], f[i - 1][j - 1] + a + b * j);
221+
}
222+
}
223+
}
224+
int s1 = accumulate(nums1.begin(), nums1.end(), 0);
225+
int s2 = accumulate(nums2.begin(), nums2.end(), 0);
226+
for (int j = 0; j <= n; ++j) {
227+
if (s1 + s2 * j - f[n][j] <= x) {
228+
return j;
229+
}
230+
}
231+
return -1;
232+
}
233+
};
234+
```
78235
236+
```cpp
237+
class Solution {
238+
public:
239+
int minimumTime(vector<int>& nums1, vector<int>& nums2, int x) {
240+
int n = nums1.size();
241+
vector<pair<int, int>> nums;
242+
for (int i = 0; i < n; ++i) {
243+
nums.emplace_back(nums2[i], nums1[i]);
244+
}
245+
sort(nums.begin(), nums.end());
246+
int f[n + 1];
247+
memset(f, 0, sizeof(f));
248+
for (auto [b, a] : nums) {
249+
for (int j = n; j; --j) {
250+
f[j] = max(f[j], f[j - 1] + a + b * j);
251+
}
252+
}
253+
int s1 = accumulate(nums1.begin(), nums1.end(), 0);
254+
int s2 = accumulate(nums2.begin(), nums2.end(), 0);
255+
for (int j = 0; j <= n; ++j) {
256+
if (s1 + s2 * j - f[j] <= x) {
257+
return j;
258+
}
259+
}
260+
return -1;
261+
}
262+
};
79263
```
80264

81265
### **Go**
82266

83267
```go
268+
func minimumTime(nums1 []int, nums2 []int, x int) int {
269+
n := len(nums1)
270+
f := make([][]int, n+1)
271+
for i := range f {
272+
f[i] = make([]int, n+1)
273+
}
274+
type pair struct{ a, b int }
275+
nums := make([]pair, n)
276+
var s1, s2 int
277+
for i := range nums {
278+
s1 += nums1[i]
279+
s2 += nums2[i]
280+
nums[i] = pair{nums1[i], nums2[i]}
281+
}
282+
sort.Slice(nums, func(i, j int) bool { return nums[i].b < nums[j].b })
283+
for i := 1; i <= n; i++ {
284+
for j := 0; j <= n; j++ {
285+
f[i][j] = f[i-1][j]
286+
if j > 0 {
287+
a, b := nums[i-1].a, nums[i-1].b
288+
f[i][j] = max(f[i][j], f[i-1][j-1]+a+b*j)
289+
}
290+
}
291+
}
292+
for j := 0; j <= n; j++ {
293+
if s1+s2*j-f[n][j] <= x {
294+
return j
295+
}
296+
}
297+
return -1
298+
}
299+
300+
func max(a, b int) int {
301+
if a > b {
302+
return a
303+
}
304+
return b
305+
}
306+
```
307+
308+
```go
309+
func minimumTime(nums1 []int, nums2 []int, x int) int {
310+
n := len(nums1)
311+
f := make([]int, n+1)
312+
type pair struct{ a, b int }
313+
nums := make([]pair, n)
314+
var s1, s2 int
315+
for i := range nums {
316+
s1 += nums1[i]
317+
s2 += nums2[i]
318+
nums[i] = pair{nums1[i], nums2[i]}
319+
}
320+
sort.Slice(nums, func(i, j int) bool { return nums[i].b < nums[j].b })
321+
for _, e := range nums {
322+
a, b := e.a, e.b
323+
for j := n; j > 0; j-- {
324+
f[j] = max(f[j], f[j-1]+a+b*j)
325+
}
326+
}
327+
for j := 0; j <= n; j++ {
328+
if s1+s2*j-f[j] <= x {
329+
return j
330+
}
331+
}
332+
return -1
333+
}
334+
335+
func max(a, b int) int {
336+
if a > b {
337+
return a
338+
}
339+
return b
340+
}
341+
```
342+
343+
### **TypeScript**
344+
345+
```ts
346+
function minimumTime(nums1: number[], nums2: number[], x: number): number {
347+
const n = nums1.length;
348+
const f: number[][] = Array(n + 1)
349+
.fill(0)
350+
.map(() => Array(n + 1).fill(0));
351+
const nums: number[][] = [];
352+
for (let i = 0; i < n; ++i) {
353+
nums.push([nums1[i], nums2[i]]);
354+
}
355+
nums.sort((a, b) => a[1] - b[1]);
356+
for (let i = 1; i <= n; ++i) {
357+
for (let j = 0; j <= n; ++j) {
358+
f[i][j] = f[i - 1][j];
359+
if (j > 0) {
360+
const [a, b] = nums[i - 1];
361+
f[i][j] = Math.max(f[i][j], f[i - 1][j - 1] + a + b * j);
362+
}
363+
}
364+
}
365+
const s1 = nums1.reduce((a, b) => a + b, 0);
366+
const s2 = nums2.reduce((a, b) => a + b, 0);
367+
for (let j = 0; j <= n; ++j) {
368+
if (s1 + s2 * j - f[n][j] <= x) {
369+
return j;
370+
}
371+
}
372+
return -1;
373+
}
374+
```
84375

376+
```ts
377+
function minimumTime(nums1: number[], nums2: number[], x: number): number {
378+
const n = nums1.length;
379+
const f: number[] = new Array(n + 1).fill(0);
380+
const nums: number[][] = [];
381+
for (let i = 0; i < n; ++i) {
382+
nums.push([nums1[i], nums2[i]]);
383+
}
384+
nums.sort((a, b) => a[1] - b[1]);
385+
for (const [a, b] of nums) {
386+
for (let j = n; j > 0; --j) {
387+
f[j] = Math.max(f[j], f[j - 1] + a + b * j);
388+
}
389+
}
390+
const s1 = nums1.reduce((a, b) => a + b, 0);
391+
const s2 = nums2.reduce((a, b) => a + b, 0);
392+
for (let j = 0; j <= n; ++j) {
393+
if (s1 + s2 * j - f[j] <= x) {
394+
return j;
395+
}
396+
}
397+
return -1;
398+
}
85399
```
86400

87401
### **...**

0 commit comments

Comments
 (0)