|
44 | 44 |
|
45 | 45 | <!-- 这里可写通用的实现逻辑 -->
|
46 | 46 |
|
| 47 | +**方法一:贪心 + 二分查找** |
| 48 | + |
| 49 | +我们可以将题意转换为,将题目最多分成 $m$ 组,每一组去掉最大值后不超过 $T$ ,求最小的满足条件的 $T$。 |
| 50 | + |
| 51 | +我们定义二分查找的左边界 $left=0$,右边界 $right=\sum_{i=0}^{n-1}time[i]$,二分查找的目标值为 $T$。 |
| 52 | + |
| 53 | +我们定义函数 $check(T)$,表示是否存在一种分组方案,使得每一组去掉最大值后不超过 $T$,并且分组数不超过 $m$。 |
| 54 | + |
| 55 | +我们可以用贪心的方法来判断是否存在这样的分组方案。我们从左到右遍历题目,将题目耗时加入当前总耗时 $s$,并更新当前分组的最大值 $mx$。如果当前总耗时 $s$ 减去当前分组的最大值 $mx$ 大于 $T$,则将当前题目作为新的分组的第一题,更新 $s$ 和 $mx$。继续遍历题目,直到遍历完所有题目。如果分组数不超过 $m$,则说明存在这样的分组方案,返回 $true$,否则返回 $false$。 |
| 56 | + |
| 57 | +时间复杂度 $O(n \times \log S)$,空间复杂度 $O(1)$。其中 $n$ 和 $S$ 分别为题目数量和题目总耗时。 |
| 58 | + |
47 | 59 | <!-- tabs:start -->
|
48 | 60 |
|
49 | 61 | ### **Python3**
|
50 | 62 |
|
51 | 63 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
52 | 64 |
|
53 | 65 | ```python
|
54 |
| - |
| 66 | +class Solution: |
| 67 | + def minTime(self, time: List[int], m: int) -> int: |
| 68 | + def check(t): |
| 69 | + s = mx = 0 |
| 70 | + d = 1 |
| 71 | + for x in time: |
| 72 | + s += x |
| 73 | + mx = max(mx, x) |
| 74 | + if s - mx > t: |
| 75 | + d += 1 |
| 76 | + s = mx = x |
| 77 | + return d <= m |
| 78 | + |
| 79 | + return bisect_left(range(sum(time)), True, key=check) |
55 | 80 | ```
|
56 | 81 |
|
57 | 82 | ### **Java**
|
58 | 83 |
|
59 | 84 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
60 | 85 |
|
61 | 86 | ```java
|
| 87 | +class Solution { |
| 88 | + public int minTime(int[] time, int m) { |
| 89 | + int left = 0, right = 0; |
| 90 | + for (int x : time) { |
| 91 | + right += x; |
| 92 | + } |
| 93 | + while (left < right) { |
| 94 | + int mid = (left + right) >> 1; |
| 95 | + if (check(mid, time, m)) { |
| 96 | + right = mid; |
| 97 | + } else { |
| 98 | + left = mid + 1; |
| 99 | + } |
| 100 | + } |
| 101 | + return left; |
| 102 | + } |
| 103 | + |
| 104 | + private boolean check(int t, int[] time, int m) { |
| 105 | + int s = 0, mx = 0; |
| 106 | + int d = 1; |
| 107 | + for (int x : time) { |
| 108 | + s += x; |
| 109 | + mx = Math.max(mx, x); |
| 110 | + if (s - mx > t) { |
| 111 | + s = x; |
| 112 | + mx = x; |
| 113 | + ++d; |
| 114 | + } |
| 115 | + } |
| 116 | + return d <= m; |
| 117 | + } |
| 118 | +} |
| 119 | +``` |
| 120 | + |
| 121 | +### **C++** |
| 122 | + |
| 123 | +```cpp |
| 124 | +class Solution { |
| 125 | +public: |
| 126 | + int minTime(vector<int>& time, int m) { |
| 127 | + int left = 0, right = 0; |
| 128 | + for (int x : time) { |
| 129 | + right += x; |
| 130 | + } |
| 131 | + auto check = [&](int t) -> bool { |
| 132 | + int s = 0, mx = 0; |
| 133 | + int d = 1; |
| 134 | + for (int x : time) { |
| 135 | + s += x; |
| 136 | + mx = max(mx, x); |
| 137 | + if (s - mx > t) { |
| 138 | + s = x; |
| 139 | + mx = x; |
| 140 | + ++d; |
| 141 | + } |
| 142 | + } |
| 143 | + return d <= m; |
| 144 | + }; |
| 145 | + while (left < right) { |
| 146 | + int mid = (left + right) >> 1; |
| 147 | + if (check(mid)) { |
| 148 | + right = mid; |
| 149 | + } else { |
| 150 | + left = mid + 1; |
| 151 | + } |
| 152 | + } |
| 153 | + return left; |
| 154 | + } |
| 155 | +}; |
| 156 | +``` |
62 | 157 |
|
| 158 | +### **Go** |
| 159 | +
|
| 160 | +```go |
| 161 | +func minTime(time []int, m int) int { |
| 162 | + right := 0 |
| 163 | + for _, x := range time { |
| 164 | + right += x |
| 165 | + } |
| 166 | + return sort.Search(right, func(t int) bool { |
| 167 | + s, mx := 0, 0 |
| 168 | + d := 1 |
| 169 | + for _, x := range time { |
| 170 | + s += x |
| 171 | + mx = max(mx, x) |
| 172 | + if s-mx > t { |
| 173 | + s, mx = x, x |
| 174 | + d++ |
| 175 | + } |
| 176 | + } |
| 177 | + return d <= m |
| 178 | + }) |
| 179 | +} |
| 180 | +
|
| 181 | +func max(a, b int) int { |
| 182 | + if a > b { |
| 183 | + return a |
| 184 | + } |
| 185 | + return b |
| 186 | +} |
63 | 187 | ```
|
64 | 188 |
|
65 | 189 | ### **...**
|
|
0 commit comments