Skip to content

Commit e3c68a3

Browse files
committed
feat: add solutions to lc problem: No.0743.Network Delay Time
1 parent 65a87b7 commit e3c68a3

File tree

5 files changed

+433
-9
lines changed

5 files changed

+433
-9
lines changed

solution/0700-0799/0743.Network Delay Time/README.md

+155-1
Original file line numberDiff line numberDiff line change
@@ -63,15 +63,169 @@
6363
<!-- 这里可写当前语言的特殊实现逻辑 -->
6464

6565
```python
66-
66+
from collections import deque
67+
class Solution:
68+
def networkDelayTime(self, times: List[List[int]], N: int, K: int) -> int:
69+
70+
# Build N+1 because index is from 1-N
71+
travel_times = [[] for y in range(N+1)]
72+
73+
# Build the array of travel times to reduce cost of searching later
74+
for time in times:
75+
origin, dest, time_travel = time
76+
travel_times[origin].append((dest, time_travel))
77+
78+
# Store the shortest amount of time to reach i-th node
79+
visited_times = [float('inf') for x in range(N+1)]
80+
visited_times[0] = 0
81+
visited_times[K] = 0
82+
83+
84+
# Store next traverse in line
85+
visited_queue = deque()
86+
visited_queue.append(K)
87+
88+
# BFS
89+
while visited_queue:
90+
cur_node = visited_queue.popleft()
91+
for time in travel_times[cur_node]:
92+
(dest, time_travel) = time
93+
if time_travel + visited_times[cur_node] < visited_times[dest]:
94+
visited_times[dest] = time_travel + visited_times[cur_node]
95+
visited_queue.append(dest)
96+
97+
# Only return the max if all were traversed. Return -1 otherwise
98+
return max(visited_times) if max(visited_times) != float('inf') else -1
6799
```
68100

69101
### **Java**
70102

71103
<!-- 这里可写当前语言的特殊实现逻辑 -->
72104

73105
```java
106+
class Solution {
107+
private static final int INF = 0x3f3f3f3f;
108+
109+
public int networkDelayTime(int[][] times, int n, int k) {
110+
List<List<Pair>> graph = new ArrayList<>();
111+
for (int i = 0; i < n; i++) {
112+
graph.add(new ArrayList<>());
113+
}
114+
for (int[] t : times) {
115+
int from = t[0] - 1, to = t[1] - 1, time = t[2];
116+
graph.get(from).add(new Pair(to, time));
117+
}
118+
119+
List<Integer> dis = new ArrayList<>();
120+
for (int i = 0; i < n; i++) {
121+
dis.add(INF);
122+
}
123+
dis.set(k - 1, 0);
124+
125+
Queue<Integer> queue = new ArrayDeque<>();
126+
queue.offer(k - 1);
127+
while (!queue.isEmpty()) {
128+
int from = queue.poll();
129+
for (Pair e : graph.get(from)) {
130+
int to = e.first, time = e.second;
131+
if (time + dis.get(from) < dis.get(to)) {
132+
dis.set(to, time + dis.get(from));
133+
queue.offer(to);
134+
}
135+
}
136+
}
137+
138+
int ans = Integer.MIN_VALUE;
139+
for (int d : dis) {
140+
ans = Math.max(ans, d);
141+
}
142+
143+
return ans == INF ? -1 : ans;
144+
}
145+
146+
static class Pair {
147+
private int first;
148+
private int second;
149+
150+
public Pair(int first, int second) {
151+
this.first = first;
152+
this.second = second;
153+
}
154+
}
155+
}
156+
```
74157

158+
### **Go**
159+
160+
Dijkstra
161+
162+
```go
163+
const Inf = 0x3f3f3f3f
164+
165+
type pair struct {
166+
first int
167+
second int
168+
}
169+
170+
var _ heap.Interface = (*pairs)(nil)
171+
172+
type pairs []pair
173+
174+
func (a pairs) Len() int { return len(a) }
175+
func (a pairs) Less(i int, j int) bool {
176+
return a[i].first < a[j].first || a[i].first == a[j].first && a[i].second < a[j].second
177+
}
178+
func (a pairs) Swap(i int, j int) { a[i], a[j] = a[j], a[i] }
179+
func (a *pairs) Push(x interface{}) { *a = append(*a, x.(pair)) }
180+
func (a *pairs) Pop() interface{} { l := len(*a); t := (*a)[l-1]; *a = (*a)[:l-1]; return t }
181+
182+
func networkDelayTime(times [][]int, n int, k int) int {
183+
graph := make([]pairs, n)
184+
for _, time := range times {
185+
from, to, time := time[0]-1, time[1]-1, time[2]
186+
graph[from] = append(graph[from], pair{to, time})
187+
}
188+
189+
dis := make([]int, n)
190+
for i := range dis {
191+
dis[i] = Inf
192+
}
193+
dis[k-1] = 0
194+
195+
vis := make([]bool, n)
196+
h := make(pairs, 0)
197+
heap.Push(&h, pair{0, k - 1})
198+
for len(h) > 0 {
199+
from := heap.Pop(&h).(pair).second
200+
if vis[from] {
201+
continue
202+
}
203+
vis[from] = true
204+
for _, e := range graph[from] {
205+
to, d := e.first, dis[from]+e.second
206+
if d < dis[to] {
207+
dis[to] = d
208+
heap.Push(&h, pair{d, to})
209+
}
210+
}
211+
}
212+
213+
ans := math.MinInt32
214+
for _, d := range dis {
215+
ans = max(ans, d)
216+
}
217+
if ans == Inf {
218+
return -1
219+
}
220+
return ans
221+
}
222+
223+
func max(x, y int) int {
224+
if x > y {
225+
return x
226+
}
227+
return y
228+
}
75229
```
76230

77231
### **...**

solution/0700-0799/0743.Network Delay Time/README_EN.md

+155-1
Original file line numberDiff line numberDiff line change
@@ -51,13 +51,167 @@
5151
### **Python3**
5252

5353
```python
54-
54+
from collections import deque
55+
class Solution:
56+
def networkDelayTime(self, times: List[List[int]], N: int, K: int) -> int:
57+
58+
# Build N+1 because index is from 1-N
59+
travel_times = [[] for y in range(N+1)]
60+
61+
# Build the array of travel times to reduce cost of searching later
62+
for time in times:
63+
origin, dest, time_travel = time
64+
travel_times[origin].append((dest, time_travel))
65+
66+
# Store the shortest amount of time to reach i-th node
67+
visited_times = [float('inf') for x in range(N+1)]
68+
visited_times[0] = 0
69+
visited_times[K] = 0
70+
71+
72+
# Store next traverse in line
73+
visited_queue = deque()
74+
visited_queue.append(K)
75+
76+
# BFS
77+
while visited_queue:
78+
cur_node = visited_queue.popleft()
79+
for time in travel_times[cur_node]:
80+
(dest, time_travel) = time
81+
if time_travel + visited_times[cur_node] < visited_times[dest]:
82+
visited_times[dest] = time_travel + visited_times[cur_node]
83+
visited_queue.append(dest)
84+
85+
# Only return the max if all were traversed. Return -1 otherwise
86+
return max(visited_times) if max(visited_times) != float('inf') else -1
5587
```
5688

5789
### **Java**
5890

5991
```java
92+
class Solution {
93+
private static final int INF = 0x3f3f3f3f;
94+
95+
public int networkDelayTime(int[][] times, int n, int k) {
96+
List<List<Pair>> graph = new ArrayList<>();
97+
for (int i = 0; i < n; i++) {
98+
graph.add(new ArrayList<>());
99+
}
100+
for (int[] t : times) {
101+
int from = t[0] - 1, to = t[1] - 1, time = t[2];
102+
graph.get(from).add(new Pair(to, time));
103+
}
104+
105+
List<Integer> dis = new ArrayList<>();
106+
for (int i = 0; i < n; i++) {
107+
dis.add(INF);
108+
}
109+
dis.set(k - 1, 0);
110+
111+
Queue<Integer> queue = new ArrayDeque<>();
112+
queue.offer(k - 1);
113+
while (!queue.isEmpty()) {
114+
int from = queue.poll();
115+
for (Pair e : graph.get(from)) {
116+
int to = e.first, time = e.second;
117+
if (time + dis.get(from) < dis.get(to)) {
118+
dis.set(to, time + dis.get(from));
119+
queue.offer(to);
120+
}
121+
}
122+
}
123+
124+
int ans = Integer.MIN_VALUE;
125+
for (int d : dis) {
126+
ans = Math.max(ans, d);
127+
}
128+
129+
return ans == INF ? -1 : ans;
130+
}
131+
132+
static class Pair {
133+
private int first;
134+
private int second;
135+
136+
public Pair(int first, int second) {
137+
this.first = first;
138+
this.second = second;
139+
}
140+
}
141+
}
142+
```
60143

144+
### **Go**
145+
146+
Dijkstra 算法
147+
148+
```go
149+
const Inf = 0x3f3f3f3f
150+
151+
type pair struct {
152+
first int
153+
second int
154+
}
155+
156+
var _ heap.Interface = (*pairs)(nil)
157+
158+
type pairs []pair
159+
160+
func (a pairs) Len() int { return len(a) }
161+
func (a pairs) Less(i int, j int) bool {
162+
return a[i].first < a[j].first || a[i].first == a[j].first && a[i].second < a[j].second
163+
}
164+
func (a pairs) Swap(i int, j int) { a[i], a[j] = a[j], a[i] }
165+
func (a *pairs) Push(x interface{}) { *a = append(*a, x.(pair)) }
166+
func (a *pairs) Pop() interface{} { l := len(*a); t := (*a)[l-1]; *a = (*a)[:l-1]; return t }
167+
168+
func networkDelayTime(times [][]int, n int, k int) int {
169+
graph := make([]pairs, n)
170+
for _, time := range times {
171+
from, to, time := time[0]-1, time[1]-1, time[2]
172+
graph[from] = append(graph[from], pair{to, time})
173+
}
174+
175+
dis := make([]int, n)
176+
for i := range dis {
177+
dis[i] = Inf
178+
}
179+
dis[k-1] = 0
180+
181+
vis := make([]bool, n)
182+
h := make(pairs, 0)
183+
heap.Push(&h, pair{0, k - 1})
184+
for len(h) > 0 {
185+
from := heap.Pop(&h).(pair).second
186+
if vis[from] {
187+
continue
188+
}
189+
vis[from] = true
190+
for _, e := range graph[from] {
191+
to, d := e.first, dis[from]+e.second
192+
if d < dis[to] {
193+
dis[to] = d
194+
heap.Push(&h, pair{d, to})
195+
}
196+
}
197+
}
198+
199+
ans := math.MinInt32
200+
for _, d := range dis {
201+
ans = max(ans, d)
202+
}
203+
if ans == Inf {
204+
return -1
205+
}
206+
return ans
207+
}
208+
209+
func max(x, y int) int {
210+
if x > y {
211+
return x
212+
}
213+
return y
214+
}
61215
```
62216

63217
### **...**

0 commit comments

Comments
 (0)