|
72 | 72 |
|
73 | 73 | ## 解法
|
74 | 74 |
|
75 |
| -### 方法一 |
| 75 | +### 方法一:记忆化搜索 |
| 76 | + |
| 77 | +我们设计一个函数 $dfs(i, j, k)$ 表示还剩下 $i$ 个 $0$ 和 $j$ 个 $1$ 且接下来待填的数字是 $k$ 的情况下,满足题目条件的稳定二进制数组的个数。那么答案就是 $dfs(zero, one, 0) + dfs(zero, one, 1)$。 |
| 78 | + |
| 79 | +函数 $dfs(i, j, k)$ 的计算过程如下: |
| 80 | + |
| 81 | +- 如果 $i \lt 0$ 或 $j \lt 0$,返回 $0$。 |
| 82 | +- 如果 $i = 0$,那么当 $k = 1$ 且 $j \leq \text{limit}$ 时返回 $1$,否则返回 $0$。 |
| 83 | +- 如果 $j = 0$,那么当 $k = 0$ 且 $i \leq \text{limit}$ 时返回 $1$,否则返回 $0$。 |
| 84 | +- 如果 $k = 0$,我们考虑前一个数字是 $0$ 的情况 $dfs(i - 1, j, 0)$ 和前一个数字是 $1$ 的情况 $dfs(i - 1, j, 1)$,如果前一个数是 $0$,那么有可能使得子数组中有超过 $\text{limit}$ 个 $0$,即不允许出现倒数第 $\text{limit} + 1$ 个数是 $1$ 的情况,所以我们要减去这种情况,即 $dfs(i - \text{limit} - 1, j, 1)$。 |
| 85 | +- 如果 $k = 1$,我们考虑前一个数字是 $0$ 的情况 $dfs(i, j - 1, 0)$ 和前一个数字是 $1$ 的情况 $dfs(i, j - 1, 1)$,如果前一个数是 $1$,那么有可能使得子数组中有超过 $\text{limit}$ 个 $1$,即不允许出现倒数第 $\text{limit} + 1$ 个数是 $0$ 的情况,所以我们要减去这种情况,即 $dfs(i, j - \text{limit} - 1, 0)$。 |
| 86 | + |
| 87 | +为了避免重复计算,我们使用记忆化搜索的方法。 |
| 88 | + |
| 89 | +时间复杂度 $O(zero \times one)$,空间复杂度 $O(zero \times one)$。 |
76 | 90 |
|
77 | 91 | <!-- tabs:start -->
|
78 | 92 |
|
79 | 93 | ```python
|
80 |
| - |
| 94 | +class Solution: |
| 95 | + def numberOfStableArrays(self, zero: int, one: int, limit: int) -> int: |
| 96 | + @cache |
| 97 | + def dfs(i: int, j: int, k: int) -> int: |
| 98 | + if i == 0: |
| 99 | + return int(k == 1 and j <= limit) |
| 100 | + if j == 0: |
| 101 | + return int(k == 0 and i <= limit) |
| 102 | + if k == 0: |
| 103 | + return ( |
| 104 | + dfs(i - 1, j, 0) |
| 105 | + + dfs(i - 1, j, 1) |
| 106 | + - (0 if i - limit - 1 < 0 else dfs(i - limit - 1, j, 1)) |
| 107 | + ) |
| 108 | + return ( |
| 109 | + dfs(i, j - 1, 0) |
| 110 | + + dfs(i, j - 1, 1) |
| 111 | + - (0 if j - limit - 1 < 0 else dfs(i, j - limit - 1, 0)) |
| 112 | + ) |
| 113 | + |
| 114 | + mod = 10**9 + 7 |
| 115 | + ans = (dfs(zero, one, 0) + dfs(zero, one, 1)) % mod |
| 116 | + dfs.cache_clear() |
| 117 | + return ans |
81 | 118 | ```
|
82 | 119 |
|
83 | 120 | ```java
|
84 |
| - |
| 121 | +class Solution { |
| 122 | + private final int mod = (int) 1e9 + 7; |
| 123 | + private Long[][][] f; |
| 124 | + private int limit; |
| 125 | + |
| 126 | + public int numberOfStableArrays(int zero, int one, int limit) { |
| 127 | + f = new Long[zero + 1][one + 1][2]; |
| 128 | + this.limit = limit; |
| 129 | + return (int) ((dfs(zero, one, 0) + dfs(zero, one, 1)) % mod); |
| 130 | + } |
| 131 | + |
| 132 | + private long dfs(int i, int j, int k) { |
| 133 | + if (i < 0 || j < 0) { |
| 134 | + return 0; |
| 135 | + } |
| 136 | + if (i == 0) { |
| 137 | + return k == 1 && j <= limit ? 1 : 0; |
| 138 | + } |
| 139 | + if (j == 0) { |
| 140 | + return k == 0 && i <= limit ? 1 : 0; |
| 141 | + } |
| 142 | + if (f[i][j][k] != null) { |
| 143 | + return f[i][j][k]; |
| 144 | + } |
| 145 | + if (k == 0) { |
| 146 | + f[i][j][k] |
| 147 | + = (dfs(i - 1, j, 0) + dfs(i - 1, j, 1) - dfs(i - limit - 1, j, 1) + mod) % mod; |
| 148 | + } else { |
| 149 | + f[i][j][k] |
| 150 | + = (dfs(i, j - 1, 0) + dfs(i, j - 1, 1) - dfs(i, j - limit - 1, 0) + mod) % mod; |
| 151 | + } |
| 152 | + return f[i][j][k]; |
| 153 | + } |
| 154 | +} |
85 | 155 | ```
|
86 | 156 |
|
87 | 157 | ```cpp
|
88 |
| - |
| 158 | +using ll = long long; |
| 159 | + |
| 160 | +class Solution { |
| 161 | +public: |
| 162 | + int numberOfStableArrays(int zero, int one, int limit) { |
| 163 | + this->limit = limit; |
| 164 | + f = vector<vector<array<ll, 2>>>(zero + 1, vector<array<ll, 2>>(one + 1, {-1, -1})); |
| 165 | + return (dfs(zero, one, 0) + dfs(zero, one, 1)) % mod; |
| 166 | + } |
| 167 | + |
| 168 | +private: |
| 169 | + const int mod = 1e9 + 7; |
| 170 | + int limit; |
| 171 | + vector<vector<array<ll, 2>>> f; |
| 172 | + |
| 173 | + ll dfs(int i, int j, int k) { |
| 174 | + if (i < 0 || j < 0) { |
| 175 | + return 0; |
| 176 | + } |
| 177 | + if (i == 0) { |
| 178 | + return k == 1 && j <= limit; |
| 179 | + } |
| 180 | + if (j == 0) { |
| 181 | + return k == 0 && i <= limit; |
| 182 | + } |
| 183 | + ll& res = f[i][j][k]; |
| 184 | + if (res != -1) { |
| 185 | + return res; |
| 186 | + } |
| 187 | + if (k == 0) { |
| 188 | + res = (dfs(i - 1, j, 0) + dfs(i - 1, j, 1) - dfs(i - limit - 1, j, 1) + mod) % mod; |
| 189 | + } else { |
| 190 | + res = (dfs(i, j - 1, 0) + dfs(i, j - 1, 1) - dfs(i, j - limit - 1, 0) + mod) % mod; |
| 191 | + } |
| 192 | + return res; |
| 193 | + } |
| 194 | +}; |
89 | 195 | ```
|
90 | 196 |
|
91 | 197 | ```go
|
| 198 | +func numberOfStableArrays(zero int, one int, limit int) int { |
| 199 | + const mod int = 1e9 + 7 |
| 200 | + f := make([][][2]int, zero+1) |
| 201 | + for i := range f { |
| 202 | + f[i] = make([][2]int, one+1) |
| 203 | + for j := range f[i] { |
| 204 | + f[i][j] = [2]int{-1, -1} |
| 205 | + } |
| 206 | + } |
| 207 | + var dfs func(i, j, k int) int |
| 208 | + dfs = func(i, j, k int) int { |
| 209 | + if i < 0 || j < 0 { |
| 210 | + return 0 |
| 211 | + } |
| 212 | + if i == 0 { |
| 213 | + if k == 1 && j <= limit { |
| 214 | + return 1 |
| 215 | + } |
| 216 | + return 0 |
| 217 | + } |
| 218 | + if j == 0 { |
| 219 | + if k == 0 && i <= limit { |
| 220 | + return 1 |
| 221 | + } |
| 222 | + return 0 |
| 223 | + } |
| 224 | + res := &f[i][j][k] |
| 225 | + if *res != -1 { |
| 226 | + return *res |
| 227 | + } |
| 228 | + if k == 0 { |
| 229 | + *res = (dfs(i-1, j, 0) + dfs(i-1, j, 1) - dfs(i-limit-1, j, 1) + mod) % mod |
| 230 | + } else { |
| 231 | + *res = (dfs(i, j-1, 0) + dfs(i, j-1, 1) - dfs(i, j-limit-1, 0) + mod) % mod |
| 232 | + } |
| 233 | + return *res |
| 234 | + } |
| 235 | + return (dfs(zero, one, 0) + dfs(zero, one, 1)) % mod |
| 236 | +} |
| 237 | +``` |
| 238 | + |
| 239 | +<!-- tabs:end --> |
| 240 | + |
| 241 | +### 方法二:动态规划 |
| 242 | + |
| 243 | +我们也可以将方法一的记忆化搜索转换为动态规划。 |
| 244 | + |
| 245 | +我们定义 $f[i][j][k]$ 表示使用 $i$ 个 $0$ 和 $j$ 个 $1$ 且最后一个数字是 $k$ 的稳定二进制数组的个数。那么答案就是 $f[zero][one][0] + f[zero][one][1]$。 |
| 246 | + |
| 247 | +初始时,我们有 $f[i][0][0] = 1$,其中 $1 \leq i \leq \min(\text{limit}, \text{zero})$;有 $f[0][j][1] = 1$,其中 $1 \leq j \leq \min(\text{limit}, \text{one})$。 |
92 | 248 |
|
| 249 | +状态转移方程如下: |
| 250 | + |
| 251 | +- $f[i][j][0] = f[i - 1][j][0] + f[i - 1][j][1] - f[i - \text{limit} - 1][j][1]$。 |
| 252 | +- $f[i][j][1] = f[i][j - 1][0] + f[i][j - 1][1] - f[i][j - \text{limit} - 1][0]$。 |
| 253 | + |
| 254 | +时间复杂度 $O(zero \times one)$,空间复杂度 $O(zero \times one)$。 |
| 255 | + |
| 256 | +<!-- tabs:start --> |
| 257 | + |
| 258 | +```python |
| 259 | +class Solution: |
| 260 | + def numberOfStableArrays(self, zero: int, one: int, limit: int) -> int: |
| 261 | + mod = 10**9 + 7 |
| 262 | + f = [[[0, 0] for _ in range(one + 1)] for _ in range(zero + 1)] |
| 263 | + for i in range(1, min(limit, zero) + 1): |
| 264 | + f[i][0][0] = 1 |
| 265 | + for j in range(1, min(limit, one) + 1): |
| 266 | + f[0][j][1] = 1 |
| 267 | + for i in range(1, zero + 1): |
| 268 | + for j in range(1, one + 1): |
| 269 | + f[i][j][0] = ( |
| 270 | + f[i - 1][j][0] |
| 271 | + + f[i - 1][j][1] |
| 272 | + - (0 if i - limit - 1 < 0 else f[i - limit - 1][j][1]) |
| 273 | + ) % mod |
| 274 | + f[i][j][1] = ( |
| 275 | + f[i][j - 1][0] |
| 276 | + + f[i][j - 1][1] |
| 277 | + - (0 if j - limit - 1 < 0 else f[i][j - limit - 1][0]) |
| 278 | + ) % mod |
| 279 | + return sum(f[zero][one]) % mod |
| 280 | +``` |
| 281 | + |
| 282 | +```java |
| 283 | +class Solution { |
| 284 | + public int numberOfStableArrays(int zero, int one, int limit) { |
| 285 | + final int mod = (int) 1e9 + 7; |
| 286 | + long[][][] f = new long[zero + 1][one + 1][2]; |
| 287 | + for (int i = 1; i <= Math.min(zero, limit); ++i) { |
| 288 | + f[i][0][0] = 1; |
| 289 | + } |
| 290 | + for (int j = 1; j <= Math.min(one, limit); ++j) { |
| 291 | + f[0][j][1] = 1; |
| 292 | + } |
| 293 | + for (int i = 1; i <= zero; ++i) { |
| 294 | + for (int j = 1; j <= one; ++j) { |
| 295 | + f[i][j][0] = (f[i - 1][j][0] + f[i - 1][j][1] |
| 296 | + - (i - limit - 1 < 0 ? 0 : f[i - limit - 1][j][1]) + mod) |
| 297 | + % mod; |
| 298 | + f[i][j][1] = (f[i][j - 1][0] + f[i][j - 1][1] |
| 299 | + - (j - limit - 1 < 0 ? 0 : f[i][j - limit - 1][0]) + mod) |
| 300 | + % mod; |
| 301 | + } |
| 302 | + } |
| 303 | + return (int) ((f[zero][one][0] + f[zero][one][1]) % mod); |
| 304 | + } |
| 305 | +} |
| 306 | +``` |
| 307 | + |
| 308 | +```cpp |
| 309 | +class Solution { |
| 310 | +public: |
| 311 | + int numberOfStableArrays(int zero, int one, int limit) { |
| 312 | + const int mod = 1e9 + 7; |
| 313 | + using ll = long long; |
| 314 | + ll f[zero + 1][one + 1][2]; |
| 315 | + memset(f, 0, sizeof(f)); |
| 316 | + for (int i = 1; i <= min(zero, limit); ++i) { |
| 317 | + f[i][0][0] = 1; |
| 318 | + } |
| 319 | + for (int j = 1; j <= min(one, limit); ++j) { |
| 320 | + f[0][j][1] = 1; |
| 321 | + } |
| 322 | + for (int i = 1; i <= zero; ++i) { |
| 323 | + for (int j = 1; j <= one; ++j) { |
| 324 | + f[i][j][0] = (f[i - 1][j][0] + f[i - 1][j][1] |
| 325 | + - (i - limit - 1 < 0 ? 0 : f[i - limit - 1][j][1]) + mod) |
| 326 | + % mod; |
| 327 | + f[i][j][1] = (f[i][j - 1][0] + f[i][j - 1][1] |
| 328 | + - (j - limit - 1 < 0 ? 0 : f[i][j - limit - 1][0]) + mod) |
| 329 | + % mod; |
| 330 | + } |
| 331 | + } |
| 332 | + return (f[zero][one][0] + f[zero][one][1]) % mod; |
| 333 | + } |
| 334 | +}; |
| 335 | +``` |
| 336 | +
|
| 337 | +```go |
| 338 | +func numberOfStableArrays(zero int, one int, limit int) int { |
| 339 | + const mod int = 1e9 + 7 |
| 340 | + f := make([][][2]int, zero+1) |
| 341 | + for i := range f { |
| 342 | + f[i] = make([][2]int, one+1) |
| 343 | + } |
| 344 | + for i := 1; i <= min(zero, limit); i++ { |
| 345 | + f[i][0][0] = 1 |
| 346 | + } |
| 347 | + for j := 1; j <= min(one, limit); j++ { |
| 348 | + f[0][j][1] = 1 |
| 349 | + } |
| 350 | + for i := 1; i <= zero; i++ { |
| 351 | + for j := 1; j <= one; j++ { |
| 352 | + f[i][j][0] = (f[i-1][j][0] + f[i-1][j][1]) % mod |
| 353 | + if i-limit-1 >= 0 { |
| 354 | + f[i][j][0] = (f[i][j][0] - f[i-limit-1][j][1] + mod) % mod |
| 355 | + } |
| 356 | + f[i][j][1] = (f[i][j-1][0] + f[i][j-1][1]) % mod |
| 357 | + if j-limit-1 >= 0 { |
| 358 | + f[i][j][1] = (f[i][j][1] - f[i][j-limit-1][0] + mod) % mod |
| 359 | + } |
| 360 | + } |
| 361 | + } |
| 362 | + return (f[zero][one][0] + f[zero][one][1]) % mod |
| 363 | +} |
93 | 364 | ```
|
94 | 365 |
|
95 | 366 | <!-- tabs:end -->
|
|
0 commit comments