|
52 | 52 |
|
53 | 53 | <!-- 这里可写通用的实现逻辑 -->
|
54 | 54 |
|
| 55 | +**方法一:暴力枚举** |
| 56 | + |
| 57 | +我们先将所有边存入邻接矩阵 $g$ 中,再将每个节点的度数存入数组 $deg$ 中。 |
| 58 | + |
| 59 | +然后枚举所有的三元组 $(i, j, k)$,其中 $i \lt j \lt k$,如果 $g[i][j] = g[j][k] = g[i][k] = 1$,则说明这三个节点构成了一个连通三元组,此时更新答案为 $deg[i] + deg[j] + deg[k] - 6$。返回最小的符合条件的答案即可。 |
| 60 | + |
| 61 | +时间复杂度 $O(n^3)$,空间复杂度 $O(n^2)$。其中 $n$ 为节点数。 |
| 62 | + |
55 | 63 | <!-- tabs:start -->
|
56 | 64 |
|
57 | 65 | ### **Python3**
|
58 | 66 |
|
59 | 67 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
60 | 68 |
|
61 | 69 | ```python
|
62 |
| - |
| 70 | +class Solution: |
| 71 | + def minTrioDegree(self, n: int, edges: List[List[int]]) -> int: |
| 72 | + g = [[False] * n for _ in range(n)] |
| 73 | + deg = [0] * n |
| 74 | + for u, v in edges: |
| 75 | + u, v = u - 1, v - 1 |
| 76 | + g[u][v] = g[v][u] = True |
| 77 | + deg[u] += 1 |
| 78 | + deg[v] += 1 |
| 79 | + ans = inf |
| 80 | + for i in range(n): |
| 81 | + for j in range(i + 1, n): |
| 82 | + if g[i][j]: |
| 83 | + for k in range(j + 1, n): |
| 84 | + if g[i][k] and g[j][k]: |
| 85 | + ans = min(ans, deg[i] + deg[j] + deg[k] - 6) |
| 86 | + return -1 if ans == inf else ans |
63 | 87 | ```
|
64 | 88 |
|
65 | 89 | ### **Java**
|
66 | 90 |
|
67 | 91 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
68 | 92 |
|
69 | 93 | ```java
|
| 94 | +class Solution { |
| 95 | + public int minTrioDegree(int n, int[][] edges) { |
| 96 | + boolean[][] g = new boolean[n][n]; |
| 97 | + int[] deg = new int[n]; |
| 98 | + for (var e : edges) { |
| 99 | + int u = e[0] - 1, v = e[1] - 1; |
| 100 | + g[u][v] = true; |
| 101 | + g[v][u] = true; |
| 102 | + ++deg[u]; |
| 103 | + ++deg[v]; |
| 104 | + } |
| 105 | + int ans = 1 << 30; |
| 106 | + for (int i = 0; i < n; ++i) { |
| 107 | + for (int j = i + 1; j < n; ++j) { |
| 108 | + if (g[i][j]) { |
| 109 | + for (int k = j + 1; k < n; ++k) { |
| 110 | + if (g[i][k] && g[j][k]) { |
| 111 | + ans = Math.min(ans, deg[i] + deg[j] + deg[k] - 6); |
| 112 | + } |
| 113 | + } |
| 114 | + } |
| 115 | + } |
| 116 | + } |
| 117 | + return ans == 1 << 30 ? -1 : ans; |
| 118 | + } |
| 119 | +} |
| 120 | +``` |
| 121 | + |
| 122 | +### **C++** |
| 123 | + |
| 124 | +```cpp |
| 125 | +class Solution { |
| 126 | +public: |
| 127 | + int minTrioDegree(int n, vector<vector<int>>& edges) { |
| 128 | + bool g[n][n]; |
| 129 | + memset(g, 0, sizeof g); |
| 130 | + int deg[n]; |
| 131 | + memset(deg, 0, sizeof deg); |
| 132 | + for (auto& e : edges) { |
| 133 | + int u = e[0] - 1, v = e[1] - 1; |
| 134 | + g[u][v] = g[v][u] = true; |
| 135 | + deg[u]++, deg[v]++; |
| 136 | + } |
| 137 | + int ans = INT_MAX; |
| 138 | + for (int i = 0; i < n; ++i) { |
| 139 | + for (int j = i + 1; j < n; ++j) { |
| 140 | + if (g[i][j]) { |
| 141 | + for (int k = j + 1; k < n; ++k) { |
| 142 | + if (g[j][k] && g[i][k]) { |
| 143 | + ans = min(ans, deg[i] + deg[j] + deg[k] - 6); |
| 144 | + } |
| 145 | + } |
| 146 | + } |
| 147 | + } |
| 148 | + } |
| 149 | + return ans == INT_MAX ? -1 : ans; |
| 150 | + } |
| 151 | +}; |
| 152 | +``` |
70 | 153 |
|
| 154 | +### **Go** |
| 155 | +
|
| 156 | +```go |
| 157 | +func minTrioDegree(n int, edges [][]int) int { |
| 158 | + g := make([][]bool, n) |
| 159 | + deg := make([]int, n) |
| 160 | + for i := range g { |
| 161 | + g[i] = make([]bool, n) |
| 162 | + } |
| 163 | + for _, e := range edges { |
| 164 | + u, v := e[0]-1, e[1]-1 |
| 165 | + g[u][v], g[v][u] = true, true |
| 166 | + deg[u]++ |
| 167 | + deg[v]++ |
| 168 | + } |
| 169 | + ans := 1 << 30 |
| 170 | + for i := 0; i < n; i++ { |
| 171 | + for j := i + 1; j < n; j++ { |
| 172 | + if g[i][j] { |
| 173 | + for k := j + 1; k < n; k++ { |
| 174 | + if g[i][k] && g[j][k] { |
| 175 | + ans = min(ans, deg[i]+deg[j]+deg[k]-6) |
| 176 | + } |
| 177 | + } |
| 178 | + } |
| 179 | + } |
| 180 | + } |
| 181 | + if ans == 1<<30 { |
| 182 | + return -1 |
| 183 | + } |
| 184 | + return ans |
| 185 | +} |
| 186 | +
|
| 187 | +func min(a, b int) int { |
| 188 | + if a < b { |
| 189 | + return a |
| 190 | + } |
| 191 | + return b |
| 192 | +} |
71 | 193 | ```
|
72 | 194 |
|
73 | 195 | ### **...**
|
|
0 commit comments