|
21 | 21 | ## 解法
|
22 | 22 |
|
23 | 23 | <!-- 这里可写通用的实现逻辑 -->
|
| 24 | + |
| 25 | +**方法一:暴力枚举** |
| 26 | + |
| 27 | +我们可以枚举任意两个点 $(x_1, y_1), (x_2, y_2)$,把这两个点连成一条直线,那么此时这条直线上的点的个数就是 2,接下来我们再枚举其他点 $(x_3, y_3)$,判断它们是否在同一条直线上,如果在,那么直线上的点的个数就加 1,如果不在,那么直线上的点的个数不变。找出所有直线上的点的个数的最大值,其对应的最小的两个点的编号即为答案。 |
| 28 | + |
| 29 | +时间复杂度 $O(n^3)$,空间复杂度 $O(1)$。其中 $n$ 是数组 `points` 的长度。 |
| 30 | + |
| 31 | +**方法二:枚举 + 哈希表** |
| 32 | + |
| 33 | +我们可以枚举一个点 $(x_1, y_1)$,把其他所有点 $(x_2, y_2)$ 与 $(x_1, y_1)$ 连成的直线的斜率存入哈希表中,斜率相同的点在同一条直线上,哈希表的键为斜率,值为直线上的点的个数。找出哈希表中的最大值,即为答案。为了避免精度问题,我们可以将斜率 $\frac{y_2 - y_1}{x_2 - x_1}$ 进行约分,约分的方法是求最大公约数,然后分子分母同时除以最大公约数,将求得的分子分母作为哈希表的键。 |
| 34 | + |
| 35 | +时间复杂度 $O(n^2 \times \log m)$,空间复杂度 $O(n)$。其中 $n$ 和 $m$ 分别是数组 `points` 的长度和数组 `points` 所有横纵坐标差的最大值。 |
| 36 | + |
| 37 | +相似题目: |
| 38 | + |
| 39 | +- [149. 直线上最多的点数](/solution/0100-0199/0149.Max%20Points%20on%20a%20Line/README.md) |
| 40 | + |
24 | 41 | <!-- tabs:start -->
|
25 | 42 |
|
26 | 43 | ### **Python3**
|
27 | 44 |
|
28 | 45 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
29 | 46 |
|
30 | 47 | ```python
|
| 48 | +class Solution: |
| 49 | + def bestLine(self, points: List[List[int]]) -> List[int]: |
| 50 | + n = len(points) |
| 51 | + mx = 0 |
| 52 | + for i in range(n): |
| 53 | + x1, y1 = points[i] |
| 54 | + for j in range(i + 1, n): |
| 55 | + x2, y2 = points[j] |
| 56 | + cnt = 2 |
| 57 | + for k in range(j + 1, n): |
| 58 | + x3, y3 = points[k] |
| 59 | + a = (y2 - y1) * (x3 - x1) |
| 60 | + b = (y3 - y1) * (x2 - x1) |
| 61 | + cnt += a == b |
| 62 | + if mx < cnt: |
| 63 | + mx = cnt |
| 64 | + x, y = i, j |
| 65 | + return [x, y] |
| 66 | +``` |
31 | 67 |
|
| 68 | +```python |
| 69 | +class Solution: |
| 70 | + def bestLine(self, points: List[List[int]]) -> List[int]: |
| 71 | + def gcd(a, b): |
| 72 | + return a if b == 0 else gcd(b, a % b) |
| 73 | + |
| 74 | + n = len(points) |
| 75 | + mx = 0 |
| 76 | + for i in range(n): |
| 77 | + x1, y1 = points[i] |
| 78 | + cnt = defaultdict(list) |
| 79 | + for j in range(i + 1, n): |
| 80 | + x2, y2 = points[j] |
| 81 | + dx, dy = x2 - x1, y2 - y1 |
| 82 | + g = gcd(dx, dy) |
| 83 | + k = (dx // g, dy // g) |
| 84 | + cnt[k].append((i, j)) |
| 85 | + if mx < len(cnt[k]) or (mx == len(cnt[k]) and (x, y) > cnt[k][0]): |
| 86 | + mx = len(cnt[k]) |
| 87 | + x, y = cnt[k][0] |
| 88 | + return [x, y] |
32 | 89 | ```
|
33 | 90 |
|
34 | 91 | ### **Java**
|
35 | 92 |
|
36 | 93 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
37 | 94 |
|
38 | 95 | ```java
|
| 96 | +class Solution { |
| 97 | + public int[] bestLine(int[][] points) { |
| 98 | + int n = points.length; |
| 99 | + int mx = 0; |
| 100 | + int[] ans = new int[2]; |
| 101 | + for (int i = 0; i < n; ++i) { |
| 102 | + int x1 = points[i][0], y1 = points[i][1]; |
| 103 | + for (int j = i + 1; j < n; ++j) { |
| 104 | + int x2 = points[j][0], y2 = points[j][1]; |
| 105 | + int cnt = 2; |
| 106 | + for (int k = j + 1; k < n; ++k) { |
| 107 | + int x3 = points[k][0], y3 = points[k][1]; |
| 108 | + int a = (y2 - y1) * (x3 - x1); |
| 109 | + int b = (y3 - y1) * (x2 - x1); |
| 110 | + if (a == b) { |
| 111 | + ++cnt; |
| 112 | + } |
| 113 | + } |
| 114 | + if (mx < cnt) { |
| 115 | + mx = cnt; |
| 116 | + ans[0] = i; |
| 117 | + ans[1] = j; |
| 118 | + } |
| 119 | + } |
| 120 | + } |
| 121 | + return ans; |
| 122 | + } |
| 123 | +} |
| 124 | +``` |
| 125 | + |
| 126 | +```java |
| 127 | +class Solution { |
| 128 | + public int[] bestLine(int[][] points) { |
| 129 | + int n = points.length; |
| 130 | + int mx = 0; |
| 131 | + int[] ans = new int[2]; |
| 132 | + for (int i = 0; i < n; ++i) { |
| 133 | + int x1 = points[i][0], y1 = points[i][1]; |
| 134 | + Map<String, List<int[]>> cnt = new HashMap<>(); |
| 135 | + for (int j = i + 1; j < n; ++j) { |
| 136 | + int x2 = points[j][0], y2 = points[j][1]; |
| 137 | + int dx = x2 - x1, dy = y2 - y1; |
| 138 | + int g = gcd(dx, dy); |
| 139 | + String key = (dx / g) + "." + (dy / g); |
| 140 | + cnt.computeIfAbsent(key, k -> new ArrayList<>()).add(new int[] {i, j}); |
| 141 | + if (mx < cnt.get(key).size() || (mx == cnt.get(key).size() && (ans[0] > cnt.get(key).get(0)[0] || (ans[0] == cnt.get(key).get(0)[0] && ans[1] > cnt.get(key).get(0)[1])))) { |
| 142 | + mx = cnt.get(key).size(); |
| 143 | + ans = cnt.get(key).get(0); |
| 144 | + } |
| 145 | + } |
| 146 | + } |
| 147 | + return ans; |
| 148 | + } |
| 149 | + |
| 150 | + private int gcd(int a, int b) { |
| 151 | + return b == 0 ? a : gcd(b, a % b); |
| 152 | + } |
| 153 | +} |
| 154 | +``` |
| 155 | + |
| 156 | +### **C++** |
| 157 | + |
| 158 | +```cpp |
| 159 | +class Solution { |
| 160 | +public: |
| 161 | + vector<int> bestLine(vector<vector<int>>& points) { |
| 162 | + int n = points.size(); |
| 163 | + int mx = 0; |
| 164 | + vector<int> ans(2); |
| 165 | + for (int i = 0; i < n; ++i) { |
| 166 | + int x1 = points[i][0], y1 = points[i][1]; |
| 167 | + for (int j = i + 1; j < n; ++j) { |
| 168 | + int x2 = points[j][0], y2 = points[j][1]; |
| 169 | + int cnt = 2; |
| 170 | + for (int k = j + 1; k < n; ++k) { |
| 171 | + int x3 = points[k][0], y3 = points[k][1]; |
| 172 | + long a = (long) (y2 - y1) * (x3 - x1); |
| 173 | + long b = (long) (y3 - y1) * (x2 - x1); |
| 174 | + cnt += a == b; |
| 175 | + } |
| 176 | + if (mx < cnt) { |
| 177 | + mx = cnt; |
| 178 | + ans[0] = i; |
| 179 | + ans[1] = j; |
| 180 | + } |
| 181 | + } |
| 182 | + } |
| 183 | + return ans; |
| 184 | + } |
| 185 | +}; |
| 186 | +``` |
| 187 | +
|
| 188 | +```cpp |
| 189 | +class Solution { |
| 190 | +public: |
| 191 | + vector<int> bestLine(vector<vector<int>>& points) { |
| 192 | + int n = points.size(); |
| 193 | + int mx = 0; |
| 194 | + pair<int, int> ans = {0, 0}; |
| 195 | + for (int i = 0; i < n; ++i) { |
| 196 | + int x1 = points[i][0], y1 = points[i][1]; |
| 197 | + unordered_map<string, vector<pair<int, int>>> cnt; |
| 198 | + for (int j = i + 1; j < n; ++j) { |
| 199 | + int x2 = points[j][0], y2 = points[j][1]; |
| 200 | + int dx = x2 - x1, dy = y2 - y1; |
| 201 | + int g = gcd(dx, dy); |
| 202 | + string k = to_string(dx / g) + "." + to_string(dy / g); |
| 203 | + cnt[k].push_back({i, j}); |
| 204 | + if (mx < cnt[k].size() || (mx == cnt[k].size() && ans > cnt[k][0])) { |
| 205 | + mx = cnt[k].size(); |
| 206 | + ans = cnt[k][0]; |
| 207 | + } |
| 208 | + } |
| 209 | + } |
| 210 | + return vector<int>{ans.first, ans.second}; |
| 211 | + } |
| 212 | +
|
| 213 | + int gcd(int a, int b) { |
| 214 | + return b == 0 ? a : gcd(b, a % b); |
| 215 | + } |
| 216 | +}; |
| 217 | +``` |
| 218 | + |
| 219 | +### **Go** |
| 220 | + |
| 221 | +```go |
| 222 | +func bestLine(points [][]int) []int { |
| 223 | + n := len(points) |
| 224 | + ans := make([]int, 2) |
| 225 | + mx := 0 |
| 226 | + for i := 0; i < n; i++ { |
| 227 | + x1, y1 := points[i][0], points[i][1] |
| 228 | + for j := i + 1; j < n; j++ { |
| 229 | + x2, y2 := points[j][0], points[j][1] |
| 230 | + cnt := 2 |
| 231 | + for k := j + 1; k < n; k++ { |
| 232 | + x3, y3 := points[k][0], points[k][1] |
| 233 | + a := (y2 - y1) * (x3 - x1) |
| 234 | + b := (y3 - y1) * (x2 - x1) |
| 235 | + if a == b { |
| 236 | + cnt++ |
| 237 | + } |
| 238 | + } |
| 239 | + if mx < cnt { |
| 240 | + mx = cnt |
| 241 | + ans[0], ans[1] = i, j |
| 242 | + } |
| 243 | + } |
| 244 | + } |
| 245 | + return ans |
| 246 | +} |
| 247 | +``` |
| 248 | + |
| 249 | +```go |
| 250 | +func bestLine(points [][]int) []int { |
| 251 | + n := len(points) |
| 252 | + ans := make([]int, 2) |
| 253 | + type pair struct{ i, j int } |
| 254 | + mx := 0 |
| 255 | + for i := 0; i < n; i++ { |
| 256 | + x1, y1 := points[i][0], points[i][1] |
| 257 | + cnt := map[pair][]pair{} |
| 258 | + for j := i + 1; j < n; j++ { |
| 259 | + x2, y2 := points[j][0], points[j][1] |
| 260 | + dx, dy := x2-x1, y2-y1 |
| 261 | + g := gcd(dx, dy) |
| 262 | + k := pair{dx / g, dy / g} |
| 263 | + cnt[k] = append(cnt[k], pair{i, j}) |
| 264 | + if mx < len(cnt[k]) || (mx == len(cnt[k]) && (ans[0] > cnt[k][0].i || (ans[0] == cnt[k][0].i && ans[1] > cnt[k][0].j))) { |
| 265 | + mx = len(cnt[k]) |
| 266 | + ans[0], ans[1] = cnt[k][0].i, cnt[k][0].j |
| 267 | + } |
| 268 | + } |
| 269 | + } |
| 270 | + return ans |
| 271 | +} |
39 | 272 |
|
| 273 | +func gcd(a, b int) int { |
| 274 | + if b == 0 { |
| 275 | + return a |
| 276 | + } |
| 277 | + return gcd(b, a%b) |
| 278 | +} |
40 | 279 | ```
|
41 | 280 |
|
42 | 281 | ### **...**
|
|
0 commit comments