You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardexpand all lines: solution/3000-3099/3098.Find the Sum of Subsequence Powers/README_EN.md
+95-7
Original file line number
Diff line number
Diff line change
@@ -82,18 +82,21 @@ tags:
82
82
83
83
### Solution 1: Memoization Search
84
84
85
-
We design a function $dfs(i, j, k, mi)$, which represents the energy sum value when we are currently processing the $i$-th element, the last selected element is the $j$-th element, we still need to select $k$ elements, and the current minimum difference is $mi$. The answer is $dfs(0, n, k, +\infty)$.
85
+
Given the problem involves the minimum difference between elements of a subsequence, we might as well sort the array $\textit{nums}$, which facilitates the calculation of the minimum difference between subsequence elements.
86
+
87
+
Next, we design a function $dfs(i, j, k, mi)$, representing the value of the energy sum when processing the $i$-th element, the last selected element is the $j$-th element, $k$ more elements need to be selected, and the current minimum difference is $mi$. Therefore, the answer is $dfs(0, n, k, +\infty)$ (If the last selected element is the $n$-th element, it indicates that no element has been selected before).
86
88
87
89
The execution process of the function $dfs(i, j, k, mi)$ is as follows:
88
90
89
-
- If $i \geq n$, it means that all elements have been processed. If $k = 0$, return $mi$, otherwise return $0$;
90
-
- Otherwise, we can choose not to select the $i$-th element, and the energy sum obtained is $dfs(i + 1, j, k, mi)$;
91
-
- We can also choose to select the $i$-th element. If $j = n$, it means that no element has been selected before, and the energy sum obtained is $dfs(i + 1, i, k - 1, mi)$; otherwise, the energy sum obtained is $dfs(i + 1, i, k - 1, \min(mi, \text{nums}[i] - \text{nums}[j]))$.
92
-
- We add up the above results, take the modulus of $10^9 + 7$, and return.
91
+
- If $i \geq n$, it means all elements have been processed. If $k = 0$, return $mi$; otherwise, return $0$.
92
+
- If the remaining number of elements $n - i$ is less than $k$, return $0$.
93
+
- Otherwise, we can choose not to select the $i$-th element, and the energy sum obtained is $dfs(i + 1, j, k, mi)$.
94
+
- We can also choose to select the $i$-th element. If $j = n$, it means no element has been selected before, then the energy sum obtained is $dfs(i + 1, i, k - 1, mi)$; otherwise, the energy sum obtained is $dfs(i + 1, i, k - 1, \min(mi, \text{nums}[i] - \text{nums}[j]))$.
95
+
- We add up the above results and return the result modulo $10^9 + 7$.
93
96
94
-
To avoid repeated calculations, we can use the method of memoization search to save the calculated results.
97
+
To avoid repeated calculations, we can use memoization, saving the results that have already been calculated.
95
98
96
-
The time complexity is $O(n^4 \times k)$, and the space complexity is $O(n^4 \times k)$. Where $n$ is the length of the array.
99
+
The time complexity is $O(n^4 \times k)$, and the space complexity is $O(n^4 \times k)$. Here, $n$ is the length of the array.
97
100
98
101
<!-- tabs:start -->
99
102
@@ -106,6 +109,8 @@ class Solution:
106
109
defdfs(i: int, j: int, k: int, mi: int) -> int:
107
110
if i >= n:
108
111
return mi if k ==0else0
112
+
if n - i < k:
113
+
return0
109
114
ans = dfs(i +1, j, k, mi)
110
115
if j == n:
111
116
ans += dfs(i +1, i, k -1, mi)
@@ -138,6 +143,9 @@ class Solution {
138
143
if (i >= nums.length) {
139
144
return k ==0? mi :0;
140
145
}
146
+
if (nums.length - i < k) {
147
+
return0;
148
+
}
141
149
long key = (1L* mi) <<18| (i <<12) | (j <<6) | k;
142
150
if (f.containsKey(key)) {
143
151
return f.get(key);
@@ -155,6 +163,42 @@ class Solution {
155
163
}
156
164
```
157
165
166
+
#### C++
167
+
168
+
```cpp
169
+
classSolution {
170
+
public:
171
+
int sumOfPowers(vector<int>& nums, int k) {
172
+
unordered_map<long long, int> f;
173
+
const int mod = 1e9 + 7;
174
+
int n = nums.size();
175
+
sort(nums.begin(), nums.end());
176
+
auto dfs = [&](auto&& dfs, int i, int j, int k, int mi) -> int {
177
+
if (i >= n) {
178
+
return k == 0 ? mi : 0;
179
+
}
180
+
if (n - i < k) {
181
+
return 0;
182
+
}
183
+
long long key = (1LL * mi) << 18 | (i << 12) | (j << 6) | k;
184
+
if (f.contains(key)) {
185
+
return f[key];
186
+
}
187
+
long long ans = dfs(dfs, i + 1, j, k, mi);
188
+
if (j == n) {
189
+
ans += dfs(dfs, i + 1, i, k - 1, mi);
190
+
} else {
191
+
ans += dfs(dfs, i + 1, i, k - 1, min(mi, nums[i] - nums[j]));
192
+
}
193
+
ans %= mod;
194
+
f[key] = ans;
195
+
return f[key];
196
+
};
197
+
return dfs(dfs, 0, n, k, INT_MAX);
198
+
}
199
+
};
200
+
```
201
+
158
202
#### Go
159
203
160
204
```go
@@ -171,6 +215,9 @@ func sumOfPowers(nums []int, k int) int {
171
215
}
172
216
return 0
173
217
}
218
+
if n-i < k {
219
+
return 0
220
+
}
174
221
key := mi<<18 | (i << 12) | (j << 6) | k
175
222
if v, ok := f[key]; ok {
176
223
return v
@@ -189,6 +236,47 @@ func sumOfPowers(nums []int, k int) int {
189
236
}
190
237
```
191
238
239
+
#### TypeScript
240
+
241
+
```ts
242
+
function sumOfPowers(nums:number[], k:number):number {
243
+
const mod =BigInt(1e9+7);
244
+
nums.sort((a, b) =>a-b);
245
+
const n =nums.length;
246
+
const f:Map<bigint, bigint> =newMap();
247
+
function dfs(i:number, j:number, k:number, mi:number):bigint {
248
+
if (i>=n) {
249
+
if (k===0) {
250
+
returnBigInt(mi);
251
+
}
252
+
returnBigInt(0);
253
+
}
254
+
if (n-i<k) {
255
+
returnBigInt(0);
256
+
}
257
+
const key =
258
+
(BigInt(mi) <<BigInt(18)) |
259
+
(BigInt(i) <<BigInt(12)) |
260
+
(BigInt(j) <<BigInt(6)) |
261
+
BigInt(k);
262
+
if (f.has(key)) {
263
+
returnf.get(key)!;
264
+
}
265
+
let ans =dfs(i+1, j, k, mi);
266
+
if (j===n) {
267
+
ans+=dfs(i+1, i, k-1, mi);
268
+
} else {
269
+
ans+=dfs(i+1, i, k-1, Math.min(mi, nums[i] -nums[j]));
270
+
}
271
+
ans%=mod;
272
+
f.set(key, ans);
273
+
returnans;
274
+
}
275
+
276
+
returnNumber(dfs(0, n, k, Number.MAX_SAFE_INTEGER));
0 commit comments