|
51 | 51 |
|
52 | 52 | <!-- 这里可写通用的实现逻辑 -->
|
53 | 53 |
|
| 54 | +**方法一:匈牙利算法** |
| 55 | + |
| 56 | +我们注意到,如果矩阵中的两个 $1$ 相邻,那么它们一定属于不同的组。因此,我们可以把矩阵中所有的 $1$ 视为点,相邻的两个 $1$ 之间连一条边,构建二分图。 |
| 57 | + |
| 58 | +那么,问题可以转化为求二分图最小点覆盖,也即选出最少数目的点来覆盖所有的边。由于二分图的最小点覆盖数等于最大匹配数,因此我们可以使用匈牙利算法求出二分图的最大匹配数。 |
| 59 | + |
| 60 | +匈牙利算法的核心思想是,不断地从未匹配的点出发,寻找增广路径,直到没有增广路径为止,就得到了最大匹配。 |
| 61 | + |
| 62 | +时间复杂度 $O(m \times n)$,其中 $n$ 和 $m$ 分别是矩阵中 $1$ 的数目以及边的数目。 |
| 63 | + |
54 | 64 | <!-- tabs:start -->
|
55 | 65 |
|
56 | 66 | ### **Python3**
|
57 | 67 |
|
58 | 68 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
59 | 69 |
|
60 | 70 | ```python
|
61 |
| - |
| 71 | +class Solution: |
| 72 | + def minimumOperations(self, grid: List[List[int]]) -> int: |
| 73 | + def find(i: int) -> int: |
| 74 | + for j in g[i]: |
| 75 | + if j not in vis: |
| 76 | + vis.add(j) |
| 77 | + if match[j] == -1 or find(match[j]): |
| 78 | + match[j] = i |
| 79 | + return 1 |
| 80 | + return 0 |
| 81 | + |
| 82 | + g = defaultdict(list) |
| 83 | + m, n = len(grid), len(grid[0]) |
| 84 | + for i, row in enumerate(grid): |
| 85 | + for j, v in enumerate(row): |
| 86 | + if (i + j) % 2 and v: |
| 87 | + x = i * n + j |
| 88 | + if i < m - 1 and grid[i + 1][j]: |
| 89 | + g[x].append(x + n) |
| 90 | + if i and grid[i - 1][j]: |
| 91 | + g[x].append(x - n) |
| 92 | + if j < n - 1 and grid[i][j + 1]: |
| 93 | + g[x].append(x + 1) |
| 94 | + if j and grid[i][j - 1]: |
| 95 | + g[x].append(x - 1) |
| 96 | + |
| 97 | + match = [-1] * (m * n) |
| 98 | + ans = 0 |
| 99 | + for i in g.keys(): |
| 100 | + vis = set() |
| 101 | + ans += find(i) |
| 102 | + return ans |
62 | 103 | ```
|
63 | 104 |
|
64 | 105 | ### **Java**
|
65 | 106 |
|
66 | 107 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
67 | 108 |
|
68 | 109 | ```java
|
| 110 | +class Solution { |
| 111 | + private Map<Integer, List<Integer>> g = new HashMap<>(); |
| 112 | + private Set<Integer> vis = new HashSet<>(); |
| 113 | + private int[] match; |
| 114 | + |
| 115 | + public int minimumOperations(int[][] grid) { |
| 116 | + int m = grid.length, n = grid[0].length; |
| 117 | + for (int i = 0; i < m; ++i) { |
| 118 | + for (int j = 0; j < n; ++j) { |
| 119 | + if ((i + j) % 2 == 1 && grid[i][j] == 1) { |
| 120 | + int x = i * n + j; |
| 121 | + if (i < m - 1 && grid[i + 1][j] == 1) { |
| 122 | + g.computeIfAbsent(x, z -> new ArrayList<>()).add(x + n); |
| 123 | + } |
| 124 | + if (i > 0 && grid[i - 1][j] == 1) { |
| 125 | + g.computeIfAbsent(x, z -> new ArrayList<>()).add(x - n); |
| 126 | + } |
| 127 | + if (j < n - 1 && grid[i][j + 1] == 1) { |
| 128 | + g.computeIfAbsent(x, z -> new ArrayList<>()).add(x + 1); |
| 129 | + } |
| 130 | + if (j > 0 && grid[i][j - 1] == 1) { |
| 131 | + g.computeIfAbsent(x, z -> new ArrayList<>()).add(x - 1); |
| 132 | + } |
| 133 | + } |
| 134 | + } |
| 135 | + } |
| 136 | + match = new int[m * n]; |
| 137 | + Arrays.fill(match, -1); |
| 138 | + int ans = 0; |
| 139 | + for (int i : g.keySet()) { |
| 140 | + ans += find(i); |
| 141 | + vis.clear(); |
| 142 | + } |
| 143 | + return ans; |
| 144 | + } |
| 145 | + |
| 146 | + private int find(int i) { |
| 147 | + for (int j : g.get(i)) { |
| 148 | + if (vis.add(j)) { |
| 149 | + if (match[j] == -1 || find(match[j]) == 1) { |
| 150 | + match[j] = i; |
| 151 | + return 1; |
| 152 | + } |
| 153 | + } |
| 154 | + } |
| 155 | + return 0; |
| 156 | + } |
| 157 | +} |
| 158 | +``` |
69 | 159 |
|
| 160 | +### **C++** |
| 161 | + |
| 162 | +```cpp |
| 163 | +class Solution { |
| 164 | +public: |
| 165 | + int minimumOperations(vector<vector<int>>& grid) { |
| 166 | + int m = grid.size(), n = grid[0].size(); |
| 167 | + vector<int> match(m * n, -1); |
| 168 | + unordered_set<int> vis; |
| 169 | + unordered_map<int, vector<int>> g; |
| 170 | + for (int i = 0; i < m; ++i) { |
| 171 | + for (int j = 0; j < n; ++j) { |
| 172 | + if ((i + j) % 2 && grid[i][j]) { |
| 173 | + int x = i * n + j; |
| 174 | + if (i < m - 1 && grid[i + 1][j]) { |
| 175 | + g[x].push_back(x + n); |
| 176 | + } |
| 177 | + if (i && grid[i - 1][j]) { |
| 178 | + g[x].push_back(x - n); |
| 179 | + } |
| 180 | + if (j < n - 1 && grid[i][j + 1]) { |
| 181 | + g[x].push_back(x + 1); |
| 182 | + } |
| 183 | + if (j && grid[i][j - 1]) { |
| 184 | + g[x].push_back(x - 1); |
| 185 | + } |
| 186 | + } |
| 187 | + } |
| 188 | + } |
| 189 | + int ans = 0; |
| 190 | + function<int(int)> find = [&](int i) -> int { |
| 191 | + for (int& j : g[i]) { |
| 192 | + if (!vis.count(j)) { |
| 193 | + vis.insert(j); |
| 194 | + if (match[j] == -1 || find(match[j])) { |
| 195 | + match[j] = i; |
| 196 | + return 1; |
| 197 | + } |
| 198 | + } |
| 199 | + } |
| 200 | + return 0; |
| 201 | + }; |
| 202 | + for (auto& [i, _] : g) { |
| 203 | + ans += find(i); |
| 204 | + vis.clear(); |
| 205 | + } |
| 206 | + return ans; |
| 207 | + } |
| 208 | +}; |
70 | 209 | ```
|
71 | 210 |
|
72 |
| -### **TypeScript** |
| 211 | +### **Go** |
| 212 | +
|
| 213 | +```go |
| 214 | +func minimumOperations(grid [][]int) (ans int) { |
| 215 | + m, n := len(grid), len(grid[0]) |
| 216 | + vis := map[int]bool{} |
| 217 | + match := make([]int, m*n) |
| 218 | + for i := range match { |
| 219 | + match[i] = -1 |
| 220 | + } |
| 221 | + g := map[int][]int{} |
| 222 | + for i, row := range grid { |
| 223 | + for j, v := range row { |
| 224 | + if (i+j)&1 == 1 && v == 1 { |
| 225 | + x := i*n + j |
| 226 | + if i < m-1 && grid[i+1][j] == 1 { |
| 227 | + g[x] = append(g[x], x+n) |
| 228 | + } |
| 229 | + if i > 0 && grid[i-1][j] == 1 { |
| 230 | + g[x] = append(g[x], x-n) |
| 231 | + } |
| 232 | + if j < n-1 && grid[i][j+1] == 1 { |
| 233 | + g[x] = append(g[x], x+1) |
| 234 | + } |
| 235 | + if j > 0 && grid[i][j-1] == 1 { |
| 236 | + g[x] = append(g[x], x-1) |
| 237 | + } |
| 238 | + } |
| 239 | + } |
| 240 | + } |
| 241 | + var find func(int) int |
| 242 | + find = func(i int) int { |
| 243 | + for _, j := range g[i] { |
| 244 | + if !vis[j] { |
| 245 | + vis[j] = true |
| 246 | + if match[j] == -1 || find(match[j]) == 1 { |
| 247 | + match[j] = i |
| 248 | + return 1 |
| 249 | + } |
| 250 | + } |
| 251 | + } |
| 252 | + return 0 |
| 253 | + } |
| 254 | + for i := range g { |
| 255 | + ans += find(i) |
| 256 | + vis = map[int]bool{} |
| 257 | + } |
| 258 | + return |
| 259 | +} |
| 260 | +``` |
73 | 261 |
|
74 |
| -<!-- 这里可写当前语言的特殊实现逻辑 --> |
| 262 | +### **TypeScript** |
75 | 263 |
|
76 | 264 | ```ts
|
77 |
| - |
| 265 | +function minimumOperations(grid: number[][]): number { |
| 266 | + const m = grid.length; |
| 267 | + const n = grid[0].length; |
| 268 | + const match: number[] = Array(m * n).fill(-1); |
| 269 | + const vis: Set<number> = new Set(); |
| 270 | + const g: Map<number, number[]> = new Map(); |
| 271 | + for (let i = 0; i < m; ++i) { |
| 272 | + for (let j = 0; j < n; ++j) { |
| 273 | + if ((i + j) % 2 && grid[i][j]) { |
| 274 | + const x = i * n + j; |
| 275 | + g.set(x, []); |
| 276 | + if (i < m - 1 && grid[i + 1][j]) { |
| 277 | + g.get(x)!.push(x + n); |
| 278 | + } |
| 279 | + if (i && grid[i - 1][j]) { |
| 280 | + g.get(x)!.push(x - n); |
| 281 | + } |
| 282 | + if (j < n - 1 && grid[i][j + 1]) { |
| 283 | + g.get(x)!.push(x + 1); |
| 284 | + } |
| 285 | + if (j && grid[i][j - 1]) { |
| 286 | + g.get(x)!.push(x - 1); |
| 287 | + } |
| 288 | + } |
| 289 | + } |
| 290 | + } |
| 291 | + const find = (i: number): number => { |
| 292 | + for (const j of g.get(i)!) { |
| 293 | + if (!vis.has(j)) { |
| 294 | + vis.add(j); |
| 295 | + if (match[j] === -1 || find(match[j])) { |
| 296 | + match[j] = i; |
| 297 | + return 1; |
| 298 | + } |
| 299 | + } |
| 300 | + } |
| 301 | + return 0; |
| 302 | + }; |
| 303 | + let ans = 0; |
| 304 | + for (const i of g.keys()) { |
| 305 | + ans += find(i); |
| 306 | + vis.clear(); |
| 307 | + } |
| 308 | + return ans; |
| 309 | +} |
78 | 310 | ```
|
79 | 311 |
|
80 | 312 | ### **...**
|
|
0 commit comments