|
| 1 | +--- |
| 2 | +comments: true |
| 3 | +difficulty: Medium |
| 4 | +edit_url: https://github.com/doocs/leetcode/edit/main/solution/3300-3399/3328.Find%20Cities%20in%20Each%20State%20II/README_EN.md |
| 5 | +tags: |
| 6 | + - Database |
| 7 | +--- |
| 8 | + |
| 9 | +<!-- problem:start --> |
| 10 | + |
| 11 | +# [3328. Find Cities in Each State II 🔒](https://leetcode.com/problems/find-cities-in-each-state-ii) |
| 12 | + |
| 13 | +[中文文档](/solution/3300-3399/3328.Find%20Cities%20in%20Each%20State%20II/README.md) |
| 14 | + |
| 15 | +## Description |
| 16 | + |
| 17 | +<!-- description:start --> |
| 18 | + |
| 19 | +<p>Table: <code>cities</code></p> |
| 20 | + |
| 21 | +<pre> |
| 22 | ++-------------+---------+ |
| 23 | +| Column Name | Type | |
| 24 | ++-------------+---------+ |
| 25 | +| state | varchar | |
| 26 | +| city | varchar | |
| 27 | ++-------------+---------+ |
| 28 | +(state, city) is the combination of columns with unique values for this table. |
| 29 | +Each row of this table contains the state name and the city name within that state. |
| 30 | +</pre> |
| 31 | + |
| 32 | +<p>Write a solution to find <strong>all the cities</strong> in <strong>each state</strong> and analyze them based on the following requirements:</p> |
| 33 | + |
| 34 | +<ul> |
| 35 | + <li>Combine all cities into a <strong>comma-separated</strong> string for each state.</li> |
| 36 | + <li>Only include states that have <strong>at least</strong> <code>3</code> cities.</li> |
| 37 | + <li>Only include states where <strong>at least one city</strong> starts with the <strong>same letter as the state name</strong>.</li> |
| 38 | +</ul> |
| 39 | + |
| 40 | +<p>Return <em>the result table ordered by</em> <em>the count of matching-letter cities in <strong>descending</strong> order</em> <em>and then by state name in <strong>ascending</strong> order</em>.</p> |
| 41 | + |
| 42 | +<p>The result format is in the following example.</p> |
| 43 | + |
| 44 | +<p> </p> |
| 45 | +<p><strong class="example">Example:</strong></p> |
| 46 | + |
| 47 | +<div class="example-block"> |
| 48 | +<p><strong>Input:</strong></p> |
| 49 | + |
| 50 | +<p>cities table:</p> |
| 51 | + |
| 52 | +<pre class="example-io"> |
| 53 | ++--------------+---------------+ |
| 54 | +| state | city | |
| 55 | ++--------------+---------------+ |
| 56 | +| New York | New York City | |
| 57 | +| New York | Newark | |
| 58 | +| New York | Buffalo | |
| 59 | +| New York | Rochester | |
| 60 | +| California | San Francisco | |
| 61 | +| California | Sacramento | |
| 62 | +| California | San Diego | |
| 63 | +| California | Los Angeles | |
| 64 | +| Texas | Tyler | |
| 65 | +| Texas | Temple | |
| 66 | +| Texas | Taylor | |
| 67 | +| Texas | Dallas | |
| 68 | +| Pennsylvania | Philadelphia | |
| 69 | +| Pennsylvania | Pittsburgh | |
| 70 | +| Pennsylvania | Pottstown | |
| 71 | ++--------------+---------------+ |
| 72 | +</pre> |
| 73 | + |
| 74 | +<p><strong>Output:</strong></p> |
| 75 | + |
| 76 | +<pre class="example-io"> |
| 77 | ++-------------+-------------------------------------------+-----------------------+ |
| 78 | +| state | cities | matching_letter_count | |
| 79 | ++-------------+-------------------------------------------+-----------------------+ |
| 80 | +| Pennsylvania| Philadelphia, Pittsburgh, Pottstown | 3 | |
| 81 | +| Texas | Dallas, Taylor, Temple, Tyler | 2 | |
| 82 | +| New York | Buffalo, Newark, New York City, Rochester | 2 | |
| 83 | ++-------------+-------------------------------------------+-----------------------+ |
| 84 | +</pre> |
| 85 | + |
| 86 | +<p><strong>Explanation:</strong></p> |
| 87 | + |
| 88 | +<ul> |
| 89 | + <li><strong>Pennsylvania</strong>: |
| 90 | + |
| 91 | + <ul> |
| 92 | + <li>Has 3 cities (meets minimum requirement)</li> |
| 93 | + <li>All 3 cities start with 'P' (same as state)</li> |
| 94 | + <li>matching_letter_count = 3</li> |
| 95 | + </ul> |
| 96 | + </li> |
| 97 | + <li><strong>Texas</strong>: |
| 98 | + <ul> |
| 99 | + <li>Has 4 cities (meets minimum requirement)</li> |
| 100 | + <li>2 cities (Temple, Tyler) start with 'T' (same as state)</li> |
| 101 | + <li>matching_letter_count = 2</li> |
| 102 | + </ul> |
| 103 | + </li> |
| 104 | + <li><strong>New York</strong>: |
| 105 | + <ul> |
| 106 | + <li>Has 4 cities (meets minimum requirement)</li> |
| 107 | + <li>2 cities (Newark, New York City) start with 'N' (same as state)</li> |
| 108 | + <li>matching_letter_count = 2</li> |
| 109 | + </ul> |
| 110 | + </li> |
| 111 | + <li><strong>California</strong> is not included in the output because: |
| 112 | + <ul> |
| 113 | + <li>Although it has 4 cities (meets minimum requirement)</li> |
| 114 | + <li>No cities start with 'C' (doesn't meet the matching letter requirement)</li> |
| 115 | + </ul> |
| 116 | + </li> |
| 117 | + |
| 118 | +</ul> |
| 119 | + |
| 120 | +<p><strong>Note:</strong></p> |
| 121 | + |
| 122 | +<ul> |
| 123 | + <li>Results are ordered by matching_letter_count in descending order</li> |
| 124 | + <li>When matching_letter_count is the same (Texas and New York both have 2), they are ordered by state name alphabetically</li> |
| 125 | + <li>Cities in each row are ordered alphabetically</li> |
| 126 | +</ul> |
| 127 | +</div> |
| 128 | + |
| 129 | +<!-- description:end --> |
| 130 | + |
| 131 | +## Solutions |
| 132 | + |
| 133 | +<!-- solution:start --> |
| 134 | + |
| 135 | +### Solution 1: Group Aggregation + Filtering |
| 136 | + |
| 137 | +We can group the `cities` table by the `state` field, then apply filtering on each group to retain only the groups that meet the specified conditions. |
| 138 | + |
| 139 | +<!-- tabs:start --> |
| 140 | + |
| 141 | +#### MySQL |
| 142 | + |
| 143 | +```sql |
| 144 | +# Write your MySQL query statement below |
| 145 | +SELECT |
| 146 | + state, |
| 147 | + GROUP_CONCAT(city ORDER BY city SEPARATOR ', ') AS cities, |
| 148 | + COUNT( |
| 149 | + CASE |
| 150 | + WHEN LEFT(city, 1) = LEFT(state, 1) THEN 1 |
| 151 | + END |
| 152 | + ) AS matching_letter_count |
| 153 | +FROM cities |
| 154 | +GROUP BY 1 |
| 155 | +HAVING COUNT(city) >= 3 AND matching_letter_count > 0 |
| 156 | +ORDER BY 3 DESC, 1; |
| 157 | +``` |
| 158 | + |
| 159 | +#### Pandas |
| 160 | + |
| 161 | +```python |
| 162 | +import pandas as pd |
| 163 | + |
| 164 | + |
| 165 | +def state_city_analysis(cities: pd.DataFrame) -> pd.DataFrame: |
| 166 | + cities["matching_letter"] = cities["city"].str[0] == cities["state"].str[0] |
| 167 | + |
| 168 | + result = ( |
| 169 | + cities.groupby("state") |
| 170 | + .agg( |
| 171 | + cities=("city", lambda x: ", ".join(sorted(x))), |
| 172 | + matching_letter_count=("matching_letter", "sum"), |
| 173 | + city_count=("city", "count"), |
| 174 | + ) |
| 175 | + .reset_index() |
| 176 | + ) |
| 177 | + |
| 178 | + result = result[(result["city_count"] >= 3) & (result["matching_letter_count"] > 0)] |
| 179 | + |
| 180 | + result = result.sort_values( |
| 181 | + by=["matching_letter_count", "state"], ascending=[False, True] |
| 182 | + ) |
| 183 | + |
| 184 | + result = result.drop(columns=["city_count"]) |
| 185 | + |
| 186 | + return result |
| 187 | +``` |
| 188 | + |
| 189 | +<!-- tabs:end --> |
| 190 | + |
| 191 | +<!-- solution:end --> |
| 192 | + |
| 193 | +<!-- problem:end --> |
0 commit comments