Skip to content

Commit a9dbf34

Browse files
authored
feat: add solutions to lc problem: No.1909 (#3969)
No.1909.Remove One Element to Make the Array Strictly Increasing
1 parent d98a926 commit a9dbf34

File tree

9 files changed

+336
-234
lines changed

9 files changed

+336
-234
lines changed

solution/1900-1999/1909.Remove One Element to Make the Array Strictly Increasing/README.md

+114-77
Original file line numberDiff line numberDiff line change
@@ -73,7 +73,11 @@ tags:
7373

7474
<!-- solution:start -->
7575

76-
### 方法一
76+
### 方法一:遍历
77+
78+
我们可以遍历数组,找到第一个不满足 $\textit{nums}[i] < \textit{nums}[i+1]$ 的位置 $i$,然后检查删除 $i$ 或者 $i+1$ 后的数组是否严格递增,如果是则返回 $\textit{true}$,否则返回 $\textit{false}$。
79+
80+
时间复杂度 $O(n)$,其中 $n$ 是数组 $\textit{nums}$ 的长度。空间复杂度 $O(1)$。
7781

7882
<!-- tabs:start -->
7983

@@ -82,43 +86,44 @@ tags:
8286
```python
8387
class Solution:
8488
def canBeIncreasing(self, nums: List[int]) -> bool:
85-
def check(nums, i):
86-
prev = -inf
87-
for j, num in enumerate(nums):
88-
if i == j:
89+
def check(k: int) -> bool:
90+
pre = -inf
91+
for i, x in enumerate(nums):
92+
if i == k:
8993
continue
90-
if prev >= nums[j]:
94+
if pre >= x:
9195
return False
92-
prev = nums[j]
96+
pre = x
9397
return True
9498

95-
i, n = 1, len(nums)
96-
while i < n and nums[i - 1] < nums[i]:
99+
i = 0
100+
while i + 1 < len(nums) and nums[i] < nums[i + 1]:
97101
i += 1
98-
return check(nums, i - 1) or check(nums, i)
102+
return check(i) or check(i + 1)
99103
```
100104

101105
#### Java
102106

103107
```java
104108
class Solution {
105109
public boolean canBeIncreasing(int[] nums) {
106-
int i = 1, n = nums.length;
107-
for (; i < n && nums[i - 1] < nums[i]; ++i)
108-
;
109-
return check(nums, i - 1) || check(nums, i);
110+
int i = 0;
111+
while (i + 1 < nums.length && nums[i] < nums[i + 1]) {
112+
++i;
113+
}
114+
return check(nums, i) || check(nums, i + 1);
110115
}
111116

112-
private boolean check(int[] nums, int i) {
113-
int prev = Integer.MIN_VALUE;
114-
for (int j = 0; j < nums.length; ++j) {
115-
if (i == j) {
117+
private boolean check(int[] nums, int k) {
118+
int pre = 0;
119+
for (int i = 0; i < nums.length; ++i) {
120+
if (i == k) {
116121
continue;
117122
}
118-
if (prev >= nums[j]) {
123+
if (pre >= nums[i]) {
119124
return false;
120125
}
121-
prev = nums[j];
126+
pre = nums[i];
122127
}
123128
return true;
124129
}
@@ -131,20 +136,25 @@ class Solution {
131136
class Solution {
132137
public:
133138
bool canBeIncreasing(vector<int>& nums) {
134-
int i = 1, n = nums.size();
135-
for (; i < n && nums[i - 1] < nums[i]; ++i)
136-
;
137-
return check(nums, i - 1) || check(nums, i);
138-
}
139-
140-
bool check(vector<int>& nums, int i) {
141-
int prev = 0;
142-
for (int j = 0; j < nums.size(); ++j) {
143-
if (i == j) continue;
144-
if (prev >= nums[j]) return false;
145-
prev = nums[j];
139+
int n = nums.size();
140+
auto check = [&](int k) -> bool {
141+
int pre = 0;
142+
for (int i = 0; i < n; ++i) {
143+
if (i == k) {
144+
continue;
145+
}
146+
if (pre >= nums[i]) {
147+
return false;
148+
}
149+
pre = nums[i];
150+
}
151+
return true;
152+
};
153+
int i = 0;
154+
while (i + 1 < n && nums[i] < nums[i + 1]) {
155+
++i;
146156
}
147-
return true;
157+
return check(i) || check(i + 1);
148158
}
149159
};
150160
```
@@ -153,50 +163,50 @@ public:
153163
154164
```go
155165
func canBeIncreasing(nums []int) bool {
156-
i, n := 1, len(nums)
157-
for ; i < n && nums[i-1] < nums[i]; i++ {
158-
159-
}
160-
return check(nums, i-1) || check(nums, i)
161-
}
162-
163-
func check(nums []int, i int) bool {
164-
prev := 0
165-
for j := 0; j < len(nums); j++ {
166-
if i == j {
167-
continue
168-
}
169-
if prev >= nums[j] {
170-
return false
166+
check := func(k int) bool {
167+
pre := 0
168+
for i, x := range nums {
169+
if i == k {
170+
continue
171+
}
172+
if pre >= x {
173+
return false
174+
}
175+
pre = x
171176
}
172-
prev = nums[j]
177+
return true
173178
}
174-
return true
179+
i := 0
180+
for i+1 < len(nums) && nums[i] < nums[i+1] {
181+
i++
182+
}
183+
return check(i) || check(i+1)
175184
}
176185
```
177186

178187
#### TypeScript
179188

180189
```ts
181190
function canBeIncreasing(nums: number[]): boolean {
182-
const check = (p: number) => {
183-
let prev = undefined;
184-
for (let j = 0; j < nums.length; j++) {
185-
if (p != j) {
186-
if (prev !== undefined && prev >= nums[j]) {
187-
return false;
188-
}
189-
prev = nums[j];
191+
const n = nums.length;
192+
const check = (k: number): boolean => {
193+
let pre = 0;
194+
for (let i = 0; i < n; ++i) {
195+
if (i === k) {
196+
continue;
190197
}
198+
if (pre >= nums[i]) {
199+
return false;
200+
}
201+
pre = nums[i];
191202
}
192203
return true;
193204
};
194-
for (let i = 0; i < nums.length; i++) {
195-
if (nums[i - 1] >= nums[i]) {
196-
return check(i - 1) || check(i);
197-
}
205+
let i = 0;
206+
while (i + 1 < n && nums[i] < nums[i + 1]) {
207+
++i;
198208
}
199-
return true;
209+
return check(i) || check(i + 1);
200210
}
201211
```
202212

@@ -205,26 +215,53 @@ function canBeIncreasing(nums: number[]): boolean {
205215
```rust
206216
impl Solution {
207217
pub fn can_be_increasing(nums: Vec<i32>) -> bool {
208-
let check = |p: usize| -> bool {
209-
let mut prev = None;
210-
for j in 0..nums.len() {
211-
if p != j {
212-
if let Some(value) = prev {
213-
if value >= nums[j] {
214-
return false;
215-
}
216-
}
217-
prev = Some(nums[j]);
218+
let check = |k: usize| -> bool {
219+
let mut pre = 0;
220+
for (i, &x) in nums.iter().enumerate() {
221+
if i == k {
222+
continue;
218223
}
224+
if pre >= x {
225+
return false;
226+
}
227+
pre = x;
219228
}
220229
true
221230
};
222-
for i in 1..nums.len() {
223-
if nums[i - 1] >= nums[i] {
224-
return check(i - 1) || check(i);
231+
232+
let mut i = 0;
233+
while i + 1 < nums.len() && nums[i] < nums[i + 1] {
234+
i += 1;
235+
}
236+
check(i) || check(i + 1)
237+
}
238+
}
239+
```
240+
241+
#### C#
242+
243+
```cs
244+
public class Solution {
245+
public bool CanBeIncreasing(int[] nums) {
246+
int n = nums.Length;
247+
bool check(int k) {
248+
int pre = 0;
249+
for (int i = 0; i < n; ++i) {
250+
if (i == k) {
251+
continue;
252+
}
253+
if (pre >= nums[i]) {
254+
return false;
255+
}
256+
pre = nums[i];
225257
}
258+
return true;
259+
}
260+
int i = 0;
261+
while (i + 1 < n && nums[i] < nums[i + 1]) {
262+
++i;
226263
}
227-
true
264+
return check(i) || check(i + 1);
228265
}
229266
}
230267
```

0 commit comments

Comments
 (0)