|
58 | 58 |
|
59 | 59 | <!-- 这里可写通用的实现逻辑 -->
|
60 | 60 |
|
| 61 | +**方法一:枚举 + 前缀和** |
| 62 | + |
| 63 | +我们可以枚举矩阵的右下角 $(i, j)$,然后向上枚举矩阵的第一行 $k$,那么每一行以 $(i, j)$ 为右下角的矩阵的宽度就是 $\min_{k \leq i} \textit{g}[k][j]$,其中 $\textit{g}[k][j]$ 表示第 $k$ 行以 $(k, j)$ 为右下角的矩阵的宽度。 |
| 64 | + |
| 65 | +因此,我们可以预处理得到二维数组 $g[i][j]$,其中 $g[i][j]$ 表示第 $i$ 行中,从第 $j$ 列向左连续的 $1$ 的个数。 |
| 66 | + |
| 67 | +时间复杂度 $O(m^2 \times n)$,空间复杂度 $O(m \times n)$。其中 $m$ 和 $n$ 分别是矩阵的行数和列数。 |
| 68 | + |
61 | 69 | <!-- tabs:start -->
|
62 | 70 |
|
63 | 71 | ### **Python3**
|
64 | 72 |
|
65 | 73 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
66 | 74 |
|
67 | 75 | ```python
|
68 |
| - |
| 76 | +class Solution: |
| 77 | + def numSubmat(self, mat: List[List[int]]) -> int: |
| 78 | + m, n = len(mat), len(mat[0]) |
| 79 | + g = [[0] * n for _ in range(m)] |
| 80 | + for i in range(m): |
| 81 | + for j in range(n): |
| 82 | + if mat[i][j]: |
| 83 | + g[i][j] = 1 if j == 0 else 1 + g[i][j - 1] |
| 84 | + ans = 0 |
| 85 | + for i in range(m): |
| 86 | + for j in range(n): |
| 87 | + col = inf |
| 88 | + for k in range(i, -1, -1): |
| 89 | + col = min(col, g[k][j]) |
| 90 | + ans += col |
| 91 | + return ans |
69 | 92 | ```
|
70 | 93 |
|
71 | 94 | ### **Java**
|
72 | 95 |
|
73 | 96 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
74 | 97 |
|
75 | 98 | ```java
|
| 99 | +class Solution { |
| 100 | + public int numSubmat(int[][] mat) { |
| 101 | + int m = mat.length, n = mat[0].length; |
| 102 | + int[][] g = new int[m][n]; |
| 103 | + for (int i = 0; i < m; ++i) { |
| 104 | + for (int j = 0; j < n; ++j) { |
| 105 | + if (mat[i][j] == 1) { |
| 106 | + g[i][j] = j == 0 ? 1 : 1 + g[i][j - 1]; |
| 107 | + } |
| 108 | + } |
| 109 | + } |
| 110 | + int ans = 0; |
| 111 | + for (int i = 0; i < m; ++i) { |
| 112 | + for (int j = 0; j < n; ++j) { |
| 113 | + int col = 1 << 30; |
| 114 | + for (int k = i; k >= 0 && col > 0; --k) { |
| 115 | + col = Math.min(col, g[k][j]); |
| 116 | + ans += col; |
| 117 | + } |
| 118 | + } |
| 119 | + } |
| 120 | + return ans; |
| 121 | + } |
| 122 | +} |
| 123 | +``` |
| 124 | + |
| 125 | +### **C++** |
| 126 | + |
| 127 | +```cpp |
| 128 | +class Solution { |
| 129 | +public: |
| 130 | + int numSubmat(vector<vector<int>>& mat) { |
| 131 | + int m = mat.size(), n = mat[0].size(); |
| 132 | + vector<vector<int>> g(m, vector<int>(n)); |
| 133 | + for (int i = 0; i < m; ++i) { |
| 134 | + for (int j = 0; j < n; ++j) { |
| 135 | + if (mat[i][j] == 1) { |
| 136 | + g[i][j] = j == 0 ? 1 : 1 + g[i][j - 1]; |
| 137 | + } |
| 138 | + } |
| 139 | + } |
| 140 | + int ans = 0; |
| 141 | + for (int i = 0; i < m; ++i) { |
| 142 | + for (int j = 0; j < n; ++j) { |
| 143 | + int col = 1 << 30; |
| 144 | + for (int k = i; k >= 0 && col > 0; --k) { |
| 145 | + col = min(col, g[k][j]); |
| 146 | + ans += col; |
| 147 | + } |
| 148 | + } |
| 149 | + } |
| 150 | + return ans; |
| 151 | + } |
| 152 | +}; |
| 153 | +``` |
76 | 154 |
|
| 155 | +### **Go** |
| 156 | +
|
| 157 | +```go |
| 158 | +func numSubmat(mat [][]int) (ans int) { |
| 159 | + m, n := len(mat), len(mat[0]) |
| 160 | + g := make([][]int, m) |
| 161 | + for i := range g { |
| 162 | + g[i] = make([]int, n) |
| 163 | + for j := range g[i] { |
| 164 | + if mat[i][j] == 1 { |
| 165 | + if j == 0 { |
| 166 | + g[i][j] = 1 |
| 167 | + } else { |
| 168 | + g[i][j] = 1 + g[i][j-1] |
| 169 | + } |
| 170 | + } |
| 171 | + } |
| 172 | + } |
| 173 | + for i := range g { |
| 174 | + for j := range g[i] { |
| 175 | + col := 1 << 30 |
| 176 | + for k := i; k >= 0 && col > 0; k-- { |
| 177 | + col = min(col, g[k][j]) |
| 178 | + ans += col |
| 179 | + } |
| 180 | + } |
| 181 | + } |
| 182 | + return |
| 183 | +} |
| 184 | +
|
| 185 | +func min(a, b int) int { |
| 186 | + if a < b { |
| 187 | + return a |
| 188 | + } |
| 189 | + return b |
| 190 | +} |
77 | 191 | ```
|
78 | 192 |
|
79 | 193 | ### **...**
|
|
0 commit comments