Skip to content

Commit 94ed2b0

Browse files
authored
feat: add solutions to lc problems: No.1991,1985 (#3990)
1 parent ee985bd commit 94ed2b0

File tree

21 files changed

+241
-219
lines changed

21 files changed

+241
-219
lines changed

solution/1900-1999/1981.Minimize the Difference Between Target and Chosen Elements/README.md

-25
Original file line numberDiff line numberDiff line change
@@ -146,31 +146,6 @@ class Solution {
146146
}
147147
```
148148

149-
#### Java
150-
151-
```java
152-
class Solution {
153-
public int minimizeTheDifference(int[][] mat, int target) {
154-
Set<Integer> f = new HashSet<>();
155-
f.add(0);
156-
for (var row : mat) {
157-
Set<Integer> g = new HashSet<>();
158-
for (int a : f) {
159-
for (int b : row) {
160-
g.add(a + b);
161-
}
162-
}
163-
f = g;
164-
}
165-
int ans = 1 << 30;
166-
for (int v : f) {
167-
ans = Math.min(ans, Math.abs(v - target));
168-
}
169-
return ans;
170-
}
171-
}
172-
```
173-
174149
#### C++
175150

176151
```cpp

solution/1900-1999/1981.Minimize the Difference Between Target and Chosen Elements/README_EN.md

-30
Original file line numberDiff line numberDiff line change
@@ -110,36 +110,6 @@ class Solution:
110110

111111
#### Java
112112

113-
```java
114-
class Solution {
115-
public int minimizeTheDifference(int[][] mat, int target) {
116-
boolean[] f = {true};
117-
for (var row : mat) {
118-
int mx = 0;
119-
for (int x : row) {
120-
mx = Math.max(mx, x);
121-
}
122-
boolean[] g = new boolean[f.length + mx];
123-
for (int x : row) {
124-
for (int j = x; j < f.length + x; ++j) {
125-
g[j] |= f[j - x];
126-
}
127-
}
128-
f = g;
129-
}
130-
int ans = 1 << 30;
131-
for (int j = 0; j < f.length; ++j) {
132-
if (f[j]) {
133-
ans = Math.min(ans, Math.abs(j - target));
134-
}
135-
}
136-
return ans;
137-
}
138-
}
139-
```
140-
141-
#### Java
142-
143113
```java
144114
class Solution {
145115
public int minimizeTheDifference(int[][] mat, int target) {
Original file line numberDiff line numberDiff line change
@@ -1,20 +1,25 @@
11
class Solution {
22
public int minimizeTheDifference(int[][] mat, int target) {
3-
Set<Integer> f = new HashSet<>();
4-
f.add(0);
3+
boolean[] f = {true};
54
for (var row : mat) {
6-
Set<Integer> g = new HashSet<>();
7-
for (int a : f) {
8-
for (int b : row) {
9-
g.add(a + b);
5+
int mx = 0;
6+
for (int x : row) {
7+
mx = Math.max(mx, x);
8+
}
9+
boolean[] g = new boolean[f.length + mx];
10+
for (int x : row) {
11+
for (int j = x; j < f.length + x; ++j) {
12+
g[j] |= f[j - x];
1013
}
1114
}
1215
f = g;
1316
}
1417
int ans = 1 << 30;
15-
for (int v : f) {
16-
ans = Math.min(ans, Math.abs(v - target));
18+
for (int j = 0; j < f.length; ++j) {
19+
if (f[j]) {
20+
ans = Math.min(ans, Math.abs(j - target));
21+
}
1722
}
1823
return ans;
1924
}
20-
}
25+
}

solution/1900-1999/1981.Minimize the Difference Between Target and Chosen Elements/Solution2.java

-25
This file was deleted.

solution/1900-1999/1985.Find the Kth Largest Integer in the Array/README.md

+9-10
Original file line numberDiff line numberDiff line change
@@ -78,7 +78,11 @@ nums 中的数字按非递减顺序排列为 ["0","0"]
7878

7979
<!-- solution:start -->
8080

81-
### 方法一:自定义排序
81+
### 方法一:排序或快速选择
82+
83+
我们可以将 $\textit{nums}$ 数组中的字符串按照整数从大到小排序,然后取第 $k$ 个元素即可。也可以使用快速选择算法,找到第 $k$ 大的整数。
84+
85+
时间复杂度 $O(n \times \log n)$ 或 $O(n)$,其中 $n$ 是 $\textit{nums}$ 数组的长度。空间复杂度 $O(\log n)$ 或 $O(1)$。
8286

8387
<!-- tabs:start -->
8488

@@ -87,13 +91,7 @@ nums 中的数字按非递减顺序排列为 ["0","0"]
8791
```python
8892
class Solution:
8993
def kthLargestNumber(self, nums: List[str], k: int) -> str:
90-
def cmp(a, b):
91-
if len(a) != len(b):
92-
return len(b) - len(a)
93-
return 1 if b > a else -1
94-
95-
nums.sort(key=cmp_to_key(cmp))
96-
return nums[k - 1]
94+
return nlargest(k, nums, key=lambda x: int(x))[k - 1]
9795
```
9896

9997
#### Java
@@ -114,8 +112,9 @@ class Solution {
114112
class Solution {
115113
public:
116114
string kthLargestNumber(vector<string>& nums, int k) {
117-
auto cmp = [](const string& a, const string& b) { return a.size() == b.size() ? a > b : a.size() > b.size(); };
118-
sort(nums.begin(), nums.end(), cmp);
115+
nth_element(nums.begin(), nums.begin() + k - 1, nums.end(), [](const string& a, const string& b) {
116+
return a.size() == b.size() ? a > b : a.size() > b.size();
117+
});
119118
return nums[k - 1];
120119
}
121120
};

solution/1900-1999/1985.Find the Kth Largest Integer in the Array/README_EN.md

+9-10
Original file line numberDiff line numberDiff line change
@@ -76,7 +76,11 @@ The 2<sup>nd</sup> largest integer in nums is &quot;0&quot;.
7676

7777
<!-- solution:start -->
7878

79-
### Solution 1
79+
### Solution 1: Sorting or Quickselect
80+
81+
We can sort the strings in the $\textit{nums}$ array in descending order as integers, and then take the $k$-th element. Alternatively, we can use the quickselect algorithm to find the $k$-th largest integer.
82+
83+
The time complexity is $O(n \times \log n)$ or $O(n)$, where $n$ is the length of the $\textit{nums}$ array. The space complexity is $O(\log n)$ or $O(1)$.
8084

8185
<!-- tabs:start -->
8286

@@ -85,13 +89,7 @@ The 2<sup>nd</sup> largest integer in nums is &quot;0&quot;.
8589
```python
8690
class Solution:
8791
def kthLargestNumber(self, nums: List[str], k: int) -> str:
88-
def cmp(a, b):
89-
if len(a) != len(b):
90-
return len(b) - len(a)
91-
return 1 if b > a else -1
92-
93-
nums.sort(key=cmp_to_key(cmp))
94-
return nums[k - 1]
92+
return nlargest(k, nums, key=lambda x: int(x))[k - 1]
9593
```
9694

9795
#### Java
@@ -112,8 +110,9 @@ class Solution {
112110
class Solution {
113111
public:
114112
string kthLargestNumber(vector<string>& nums, int k) {
115-
auto cmp = [](const string& a, const string& b) { return a.size() == b.size() ? a > b : a.size() > b.size(); };
116-
sort(nums.begin(), nums.end(), cmp);
113+
nth_element(nums.begin(), nums.begin() + k - 1, nums.end(), [](const string& a, const string& b) {
114+
return a.size() == b.size() ? a > b : a.size() > b.size();
115+
});
117116
return nums[k - 1];
118117
}
119118
};
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,9 @@
11
class Solution {
22
public:
33
string kthLargestNumber(vector<string>& nums, int k) {
4-
auto cmp = [](const string& a, const string& b) { return a.size() == b.size() ? a > b : a.size() > b.size(); };
5-
sort(nums.begin(), nums.end(), cmp);
4+
nth_element(nums.begin(), nums.begin() + k - 1, nums.end(), [](const string& a, const string& b) {
5+
return a.size() == b.size() ? a > b : a.size() > b.size();
6+
});
67
return nums[k - 1];
78
}
8-
};
9+
};
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,3 @@
11
class Solution:
22
def kthLargestNumber(self, nums: List[str], k: int) -> str:
3-
def cmp(a, b):
4-
if len(a) != len(b):
5-
return len(b) - len(a)
6-
return 1 if b > a else -1
7-
8-
nums.sort(key=cmp_to_key(cmp))
9-
return nums[k - 1]
3+
return nlargest(k, nums, key=lambda x: int(x))[k - 1]

solution/1900-1999/1986.Minimum Number of Work Sessions to Finish the Tasks/README_EN.md

+11-1
Original file line numberDiff line numberDiff line change
@@ -81,7 +81,17 @@ tags:
8181

8282
<!-- solution:start -->
8383

84-
### Solution 1
84+
### Solution 1: State Compression Dynamic Programming + Subset Enumeration
85+
86+
We note that $n$ does not exceed $14$, so we can consider using state compression dynamic programming to solve this problem.
87+
88+
We use a binary number $i$ of length $n$ to represent the current task state, where the $j$-th bit of $i$ is $1$ if and only if the $j$-th task is completed. We use $f[i]$ to represent the minimum number of work sessions needed to complete all tasks with state $i$.
89+
90+
We can enumerate all subsets $j$ of $i$, where each bit of the binary representation of $j$ is a subset of the corresponding bit of the binary representation of $i$, i.e., $j \subseteq i$. If the tasks corresponding to $j$ can be completed in one work session, then we can update $f[i]$ using $f[i \oplus j] + 1$, where $i \oplus j$ represents the bitwise XOR of $i$ and $j$.
91+
92+
The final answer is $f[2^n - 1]$.
93+
94+
The time complexity is $O(n \times 3^n)$, and the space complexity is $O(2^n)$. Here, $n$ is the number of tasks.
8595

8696
<!-- tabs:start -->
8797

solution/1900-1999/1987.Number of Unique Good Subsequences/README_EN.md

+17-2
Original file line numberDiff line numberDiff line change
@@ -54,7 +54,7 @@ The unique good subsequences are &quot;1&quot; and &quot;11&quot;.</pre>
5454
<pre>
5555
<strong>Input:</strong> binary = &quot;101&quot;
5656
<strong>Output:</strong> 5
57-
<strong>Explanation:</strong> The good subsequences of binary are [&quot;1&quot;, &quot;0&quot;, &quot;1&quot;, &quot;10&quot;, &quot;11&quot;, &quot;101&quot;].
57+
<strong>Explanation:</strong> The good subsequences of binary are [&quot;1&quot;, &quot;0&quot;, &quot;1&quot;, &quot;10&quot;, &quot;11&quot;, &quot;101&quot;].
5858
The unique good subsequences are &quot;0&quot;, &quot;1&quot;, &quot;10&quot;, &quot;11&quot;, and &quot;101&quot;.
5959
</pre>
6060

@@ -72,7 +72,22 @@ The unique good subsequences are &quot;0&quot;, &quot;1&quot;, &quot;10&quot;, &
7272

7373
<!-- solution:start -->
7474

75-
### Solution 1
75+
### Solution 1: Dynamic Programming
76+
77+
We define $f$ as the number of distinct good subsequences ending with $1$, and $g$ as the number of distinct good subsequences ending with $0$ and starting with $1$. Initially, $f = g = 0$.
78+
79+
For a binary string, we can traverse each bit from left to right. Suppose the current bit is $c$:
80+
81+
- If $c = 0$, we can append $c$ to the $f$ and $g$ distinct good subsequences, so update $g = (g + f) \bmod (10^9 + 7)$;
82+
- If $c = 1$, we can append $c$ to the $f$ and $g$ distinct good subsequences, and also append $c$ alone, so update $f = (f + g + 1) \bmod (10^9 + 7)$.
83+
84+
If the string contains $0$, the final answer is $f + g + 1$, otherwise the answer is $f + g$.
85+
86+
The time complexity is $O(n)$, where $n$ is the length of the string. The space complexity is $O(1)$.
87+
88+
Similar problems:
89+
90+
- [940. Distinct Subsequences II](https://github.com/doocs/leetcode/blob/main/solution/0900-0999/0940.Distinct%20Subsequences%20II/README_EN.md)
7691

7792
<!-- tabs:start -->
7893

solution/1900-1999/1989.Maximum Number of People That Can Be Caught in Tag/README.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -75,11 +75,11 @@ tags:
7575

7676
我们可以用两个指针 $i$ 和 $j$ 指向鬼和非鬼的人,初始时 $i=0$, $j=0$。
7777

78-
然后我们从左到右遍历数组,当遇到鬼时,即 $team[i]=1$ 时,如果此时 $j \lt n$ 并且 $team[j]=1$ 或者 $i - j \gt dist$,则指针 $j$ 循环右移,也即是说,我们要找到第一个不是鬼的人,且 $i$ 和 $j$ 之间的距离不超过 $dist$。如果找到了这样的人,则将指针 $j$ 右移一位,表示我们已经抓住了这个人,同时答案加一。继续遍历数组,直到遍历完整个数组。
78+
然后我们从左到右遍历数组,当遇到鬼时,即 $team[i]=1$ 时,如果此时 $j \lt n$ 并且 $\textit{team}[j]=1$ 或者 $i - j \gt \textit{dist}$,则指针 $j$ 循环右移,也即是说,我们要找到第一个不是鬼的人,且 $i$ 和 $j$ 之间的距离不超过 $\textit{dist}$。如果找到了这样的人,则将指针 $j$ 右移一位,表示我们已经抓住了这个人,同时答案加一。继续遍历数组,直到遍历完整个数组。
7979

8080
最后返回答案即可。
8181

82-
时间复杂度 $O(n)$,空间复杂度 $O(1)$。其中 $n$ 为数组的长度
82+
时间复杂度 $O(n)$,其中 $n$ 为数组 $\textit{team}$ 的长度。空间复杂度 $O(1)$。
8383

8484
<!-- tabs:start -->
8585

solution/1900-1999/1989.Maximum Number of People That Can Be Caught in Tag/README_EN.md

+9-1
Original file line numberDiff line numberDiff line change
@@ -69,7 +69,15 @@ There are no people who are not &quot;it&quot; to catch.
6969

7070
<!-- solution:start -->
7171

72-
### Solution 1
72+
### Solution 1: Two Pointers
73+
74+
We can use two pointers $i$ and $j$ to point to the ghost and non-ghost people, initially $i=0$, $j=0$.
75+
76+
Then we traverse the array from left to right. When we encounter a ghost, i.e., $team[i]=1$, if $j \lt n$ and $\textit{team}[j]=1$ or $i - j \gt \textit{dist}$, then move pointer $j$ to the right in a loop. This means we need to find the first non-ghost person such that the distance between $i$ and $j$ does not exceed $\textit{dist}$. If such a person is found, move pointer $j$ one step to the right, indicating that we have caught this person, and increment the answer by one. Continue traversing the array until the entire array is processed.
77+
78+
Finally, return the answer.
79+
80+
The time complexity is $O(n)$, where $n$ is the length of the array $\textit{team}$. The space complexity is $O(1)$.
7381

7482
<!-- tabs:start -->
7583

0 commit comments

Comments
 (0)